
数据分析与数据挖掘
蠢蠢的打码
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
三种梯度下降方法
在这些代码中,`X`是特征矩阵,`y`是目标变量,`theta`是参数向量,`learning_rate`是学习率,`iterations`是迭代次数,`batch_size`是小批量的大小。`compute_cost`函数用于计算损失函数的值。2. 随机梯度下降(Stochastic Gradient Descent):在每一步中,我们随机选择一个样本来计算梯度。3. 小批量梯度下降(Mini-batch Gradient Descent):在每一步中,我们使用一部分样本来计算梯度。原创 2024-06-19 23:08:16 · 238 阅读 · 0 评论 -
几个代表性聚类算法:KMeans++、AGNES、DBSCAN
在这段代码中,`initialize_centroids`函数用于初始化聚类中心,`assign_labels`函数用于将每个数据点分配给最近的聚类中心,`compute_centroids`函数用于计算新的聚类中心,`kmeans_plus_plus`函数则是整个KMeans++算法的主体部分,它使用上述三个函数进行迭代,直到达到最大迭代次数或者聚类中心不再变化。否则,创建一个新的聚类,并递归地访问该聚类的所有可达点。在每一步中,我们找到距离最小的两个聚类并将它们合并,直到聚类的数量达到我们想要的数量。原创 2024-06-19 14:58:10 · 262 阅读 · 0 评论