ADC的量化噪声和信噪比,过采样

本文探讨了ADC(模数转换器)中的量化噪声和信噪比概念。量化噪声是模拟信号转换为数字信号过程中不可避免的误差,其总能量不变但可通过提高采样速度来降低幅值。信噪比(SNR)可以通过增加ADC采样位数或采用过采样技术来提升。过采样能够将噪声分散到更宽的频谱范围内,从而降低噪声的平均幅值,提高信噪比。总结来说,优化ADC采样策略对于提高信号质量至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单记录几个ADC的东西

  1. 量化噪声
    下图中,蓝色斜线是连续的模拟信号,阶梯状波形是经过ADC转换后的离散信号。如果我们把这个两个相减,会得到右边那个像锯齿波一样的量化误差

在这里插入图片描述
量化噪声(Quantization Noise),这里Q值代表量化,如果采样越快,两个Q之间的距离越小,Q的幅值越低,也就是量化噪声的幅值越低。虽然Q值幅值变低,但是它包围的面积不变。因此,改变采样速度,可以改变量化噪声的幅值,但不能改变量化噪声的总能量。
在这里插入图片描述
从时域里看,对于一个模拟的Sine波形,经过ADC转换数字化后,我们会得到锯齿状的Sine波形。我们加快采样速度,可以把锯齿变得很细,但是依旧存在,并且量化噪声的总能量不变
2. 信噪比
如果我们把上面的Sine波形放到频域里看。我们希望信号频率的幅值尽量大,而噪声幅值尽量小
在这里插入图片描述在这里插入图片描述
上图的噪声主要来源于量化噪声,通过信噪比计算,我们会得到一个固定的公式:

信噪比SNR(dB) = 6.02N + 1.76(噪声仅考虑量化噪声)

  • SNR:指的是量化噪声信噪比(Signal noise ratio)
  • N:指的是ADC采样位数。如果我们把N提高,信噪比提高,即信号更大,噪声更小。采样质量变好,因此,提高ADC采样位数,可以提高采样质量。
    一般来说,提高采样位数,往往意味着ADC的成本可能也会更高。
    有没有不提高位数,同样优化信噪比的方法呢?答案是“有的”,那就是过采样
  1. 过采样提高信噪比
    我们把图3进一步简化。下图红色箭头表示主信号的幅值,灰色代表噪声幅值,平均分布在DC到fs/2之间。(fs为采样频率)
    在这里插入图片描述
    如上图,如果我们将采样率提高K倍,噪声能量不变,并且平均分布在更宽范围,从而噪声的幅值降低。原始信号没变,但是噪声幅值减少,也就是信噪比提高了。提高采样率之后的信噪比公式:
    SNR=6.02N+1.76dB+10log(OSR)
    其中,过采样速率OSR = Fs/(2 ᵡ BW), BW为带宽。(注意:此公式仅适用于只存在量化噪声的理想ADC)
    因此,提高采样率有助于提高信噪比。
<think>好的,我现在要回答用户关于ADC动态范围的概念计算方法的问题。首先,我需要回忆一下ADC的基本知识,特别是动态范围的定义相关参数。 根据用户提供的引用内容,引用[1]提到ADC的SNR(信噪比)对动态范围有影响。动态范围通常与SNR相关,尤其是在没有谐波失真时的理想情况下。动态范围可能指的是ADC能够分辨的最小信号到最大信号的范围,通常用分贝(dB)表示。 接下来,动态范围的计算方法需要考虑ADC的分辨率,也就是位数。比如,一个N位的ADC,其量化电平数目是2^N,所以理论上的动态范围可以用公式20*log10(2^N)来计算,大约是6.02N dB。这可能是一个基础公式。但实际中可能还要考虑噪声其他因素,比如信噪比加失真(SINAD)的影响。这时候动态范围可能等于SINAD,也就是有效位数(ENOB)乘以6.02再加上1.76 dB。 另外,引用[3]提到CMOS图像传感器的像素阵列颜色检测,虽然不直接相关,但可能动态范围在图像传感器中也有类似定义,即最大信号与噪声的比值。但这里主要关注ADC的动态范围。 需要确认动态范围是否与有效位数有关,以及是否考虑噪声的影响。例如,当存在噪声时,动态范围可能会降低。因此,实际应用中动态范围的计算可能需要结合SNRENOB。 总结步骤: 1. 定义动态范围:最大可分辨信号与最小可分辨信号的比值,转换为dB。 2. 理论计算:基于位数,6.02N + 1.76 dB。 3. 实际计算:考虑噪声失真,使用SINAD或ENOB。 4. 可能涉及的其他因素,如过采样对动态范围的影响。 需要验证这些公式是否正确,并确保引用的信息准确。例如,引用[1]提到SNR改善ADC,可能说明动态范围与SNR直接相关。因此,在没有失真的情况下,动态范围等于SNR,即DR = 6.02N + 1.76 dB。而当存在失真时,动态范围可能由SINAD决定,即DR = SINAD。 可能还需要区分不同情况下的动态范围定义,比如音频ADC图像传感器中的动态范围是否有差异,但用户的问题集中在数字信号处理中的ADC,因此应该以通用定义为主。 最后,生成相关问题时要围绕动态范围的计算、影响因素、优化方法以及应用场景等方面展开。</think>### ADC动态范围的定义与计算 #### 定义 ADC(模数转换器)的动态范围(Dynamic Range, DR)定义为**最大无失真信号功率与最小可检测信号功率的比值**,通常以分贝(dB)表示。最小可检测信号通常由噪声基底决定,而最大信号受限于ADC的满量程输入范围[^1]。 #### 计算方法 1. **理论动态范围(理想情况)** 对于一个$N$位ADC,其理论动态范围公式为: $$DR = 6.02N + 1.76 \, \text{dB}$$ 该公式基于量化噪声模型,假设噪声均匀分布且无谐波失真。 2. **实际动态范围(包含噪声与失真)** 实际应用中需考虑信噪比加失真(SINAD),此时动态范围等于SINAD值: $$DR = \text{SINAD} = 6.02 \times \text{ENOB} + 1.76 \, \text{dB}$$ 其中,ENOB(有效位数)通过测量SINAD计算得到: $$\text{ENOB} = \frac{\text{SINAD} - 1.76}{6.02}$$ 3. **过采样对动态范围的影响** 过采样率每增加4倍,动态范围提升约$3\,\text{dB}$: $$DR_{\text{oversampled}} = 6.02N + 1.76 + 10\log_{10}(M) \, \text{dB}$$ 其中$M$为过采样倍数。 #### 关键参数关联 - **SNR(信噪比)**:直接影响动态范围的上限[^1]。 - **满量程电压(FS)**:决定最大输入信号幅度。 - **噪声基底**:由热噪声量化噪声等共同决定最小可检测信号。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值