基于GAN的YOLOP模型对抗攻击防御系统设计与实现
1. 引言
1.1 研究背景与意义
随着深度学习技术在计算机视觉领域的广泛应用,目标检测系统已成为自动驾驶、智能监控等关键应用的核心组件。YOLOP(You Only Look Once for Panoptic driving perception)作为一种高效的多任务学习模型,能够同时完成目标检测、可行驶区域分割和车道线检测等任务,在自动驾驶领域展现出巨大潜力。然而,深度学习模型普遍存在对抗样本脆弱性的问题,攻击者可以通过精心设计的微小扰动生成对抗样本,导致模型误判,这对自动驾驶等安全关键系统构成严重威胁。
生成对抗网络(GAN)近年来在图像修复和防御对抗攻击方面显示出独特优势。Pix2Pix作为一种条件GAN框架,通过学习输入图像到目标图像的映射关系,能够有效去除图像中的对抗扰动。本文将探索如何结合GAN的图像修复能力与YOLOP模型,构建一个鲁棒的防御系统,提高自动驾驶感知系统在对抗环境下的安全性。
1.2 相关工作综述
对抗攻击与防御研究已成为深度学习安全领域的热点。Szegedy等人首次发现深度神经网络容易受到对抗样本的攻击。Goodfellow提出的快速梯度符号法(FGSM)是一种经典的对抗攻击方法。在防御方面,现有方法主要分为三类:对抗训练、输入转换和模型增强。其中,基于GAN的防御属于输入转换方法,Xie等人证明了GAN可以有效去除对抗扰动。
在目标检测防御方面,Xu等人提出了特征去噪方法,而本文则探索基于图像空间修复的