1078. 【搜索与回溯算法】部落卫队

题目描述

原始部落byteland中的居民们为了争夺有限的资源,经常发生冲突。几乎每个居民都有他的仇敌。部落酋长为了组织一支保卫部落的队伍,希望从部落的居民中选出最多的居民入伍,并保证队伍中任何2 个人都不是仇敌。
给定byteland部落中居民间的仇敌关系,编程计算组成部落卫队的最佳方案。

输入

第1行有2个正整数n和m,表示byteland部落中有n个居民,居民间有m个仇敌关系。居民编号为1,2,…,n。接下来的m行中,每行有2个正整数u和v,表示居民u与居民v是仇敌。

输出

计算出的部落卫队的最佳组建方案输出。第1行是部落卫队的顶人数;第2行是卫队组成x i,1≤i≤n,xi =0 表示居民i不在卫队中,xi=1表示居民i在卫队中。

样例输入 
7 10
1 2
1 4
2 4
2 3
2 5
2 6
3 5
3 6
4 5
5 6
样例输出 
3
1 0 1 0 0 0 1
数据范围限制

n<=50

这道题涉及到了图和深度优先搜索的知识,最主要的问题在于如何储存和判断两个人之间是否存在仇敌关系,还有如何进行搜索等。


一、图的储存

我们以5个居民为例,则可以把每一个居民当做一个结点,如果两个人之间没有仇敌关系就用线连接起来,这样就形成了一个图,于是这个问题就转化成了从图中寻找最多的结点,且这些结点之间均有连线,即不是仇敌关系。

那么我们如何储存这样一个图呢?答案是:邻接矩阵。

邻接矩阵

邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn} 。G的邻接矩阵是一个具有下列性质的n阶方阵:

①对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此。

②在无向图中,任一顶点i的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行所有非零元素的个数,而入度为第i列所有非零元素的个数。

③用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。

因此在这里可以定义一个二维数组作为一个进阶矩阵:a[301][301](请大家注意一下数据的范围),其中a[u][v]表示第u个居民和第v个居民之间的关系,用1表示他们两个之间有仇敌关系,0反之。

此时我们有了一个框架来储存这个图,那么怎样使两个结点在邻接矩阵上相连呢?很简单,因为u对v有仇敌关系,反过来,v对u也有仇敌关系,所以:

for(int i=1;i<=m;i++)
{
	cin>>u>>v;
	a[u][v]=a[v][u]=1;
}

这样就可以把这个图储存下来了。

那么如何在搜索中判断或寻找这个图呢?我们在下文中讲。


二、搜索

整个搜索过程有点像任意的排列,在任意的排列中每一种数字只有选或不选两种状态,在此题种,每一个居民也有选或不选两种状态,因此可以开一个bool数组x[301]来储存每一个居民被选的状态。

我们规定:

const int N=301; 
bool x[N];   ///是否将第i个节点加入团中 
bool bestx[N];   ///记录最优解 
int bestn;   ///记录最优值 
int cn;  ///当前已放入团中的节点数量 
int deep;  ///当前搜索的深度

此时一五个居民为例,我们来模拟一次搜索。

(1)、deep=1

开始搜索第一层。扩展A结点,首先判断是否满足条件,因为之前还没有选中任何结点,所以满足条件。扩展左分支,让x[1]=1,cn++,cn=1,生成B结点。

那么这个限制条件是什么呢?

  1. 这个数没有被选中过,即x[j]!=1.
  2. 查看这个人和其他居民的仇敌关系(详见代码)。
bool place(int t)  ///判断是否可以把节点t加入团中 
{
	bool ok=true;
	for(int j=1;j<t;j++)  ///节点t与t-1个节点中被选中的节点是否相连 
	{
		if(x[j] && a[t][j]==1)  ///x[j]表示j是被选中的节点,a[t][j]==1 表示t和j是有仇敌关系   
		{
			ok=false;
			break;
		} 
	} 
	return ok;
}

(2)、deep=2

扩展B结点。判断t号结点是否符合约束条件,满足条件,扩展左分支,令x[2]=1,cn++,cn=2,生成C结点。

(3)、deep=3

扩展C结点。判断t号结点是否符合约束条件,满足条件,扩展左分支,令x[3]=1,cn++,cn=3,生成D结点。

(4)、deep=4

扩展D结点。首先判断t号结点是否和前面已选中的结点(1、2、3号)有相连边,(假设)4号和2号没有相连边,不满足约束条件,不能向左扩展分支。判断限界条件cn+fn>bestn,cn=3,fn=n-1=1,bestn=0,满足限界条件,令x[4]=0,生成E结点。

(5)、deep=5

扩展E结点。首先判断t号结点是否和前面已选中的结点(1、2、3号)有相连边,(假设)5号和2号没有相连边,不满足约束条件,不能向左扩展分支。判断限界条件cn+fn>bestn,cn=3,fn=n-1=0,bestn=0,满足限界条件,令x[5]=0,生成F结点。

(6)、deep=6

扩展F结点。t>n,找到了一个当前的最优解,用bestx[]保存当前最优解为{1,1,1,0,0},保存当前最优值bestn=cn=3,F结点为死结点。

(8)、deep=5

向上回溯到E结点。E结点的左右子树都已经查看了,继续向上回溯到D结点,D结点的左右子树也均已查看,继续回溯到C结点,cn--,cn=2,。因为C结点在生成D结点时,已经执行过cn++,此时应该再减回去。

(9)、deep=3

重新扩展C结点。C结点的右子树还没有生成过,根据限界条件cn+fn>bestn,cn=2,fn=n-t=2,beatn=3,向右扩展子树。令x[3]=0,生成G结点。

……

以此类推,一直拓展回到A结点为死结点,不能继续再产生新的子树,搜索结束。

到此,我们成功的模拟了一次dfs的过程,那么这个程序该怎么写呢?

有上述过程不难看出:如果t>n表示已经搜索到了叶子结点,那么记录最优值和最优解,return。否则判断是否满足约束条件(要和限界条件有所区分),如果满足,则拓展左子树,此时左子树上的节点表示能够进入卫队,所以令x[deep]=1,cn++,表示此时的人数增加1,然后dfs(deep+1)继续搜索左子树。当回溯时,cn--。

判断如果满足限界条件,则拓展右子树,此时该子树上的结点不能进入卫队,所以令x[deep]=0,人数不变,dfs(deep+1)继续搜索右子树。


完整程序:

#include<iostream>
#include<string.h>
using namespace std;
const int N=301;
int a[N][N];   ///图用邻接矩阵表示 
bool x[N];   ///是否将第i个节点加入团中 
bool bestx[N];   ///记录最优解 
int bestn;   ///记录最优值 
int cn;  ///当前已放入团中的节点数量 
int n,m;   ///n为图中节点数,m为图中边数 

bool place(int t)  ///判断是否可以把节点t加入团中 
{
	bool ok=true;
	for(int j=1;j<t;j++)  ///节点t与t-1个节点中被选中的节点是否相连 
	{
		if(x[j] && a[t][j]==1)  ///x[j]表示j是被选中的节点,a[t][j]==1 表示t和j是有仇敌关系   
		{
			ok=false;
			break;
		} 
	} 
	return ok;
} 

void dfs(int deep)
{
	if(deep>n)
	{///到达了叶子节点  
		for(int i=1;i<=n;i++)
			bestx[i]=x[i];
		bestn=cn;
		return;
	}
	if(place(deep))  ///满足条件则放入左子树,即把节点t放入团中  
	{
		x[deep]=1;
		cn++;
		dfs(deep+1);
		cn--;  ///回溯   
	} 
	if(cn+n-deep>bestn)  ///放入右子树 
	{
		x[deep]=0;
		dfs(deep+1);
	} 
}

int main()
{
	int u,v;  ///n就是节点数,m数边数  
	cin>>n>>m;
	memset(a,0,sizeof(a));///邻接矩阵里面的数据初始化为 0 
	for(int i=1;i<=m;i++)
	{
		cin>>u>>v;
		a[u][v]=a[v][u]=1;
	} 
	bestn=0;
	cn=0;
	dfs(1);
	cout<<bestn<<endl;
	for(int i=1;i<=n;i++)
		cout<<bestx[i]<<" ";
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值