pytorch模型量化和移植安卓详细教程

本文详细介绍了PyTorch模型的量化过程,包括后训练量化和量化感知训练,以及如何使用Numeric Suite进行数值调试。此外,还阐述了模型移植到Android的步骤,帮助实现深度学习模型在移动端的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

十一下雨,在家撸模型,希望对pytorch模型进行轻量化,间断摸索了几天,效果不错,做个总结分享出来。

量化是一种常见的技术,人们使用它来使模型在推断时运行更快,具有更低的内存占用和更低的功耗,而无需更改模型架构。在这篇博客文章中,我们将简要介绍量化是什么以及如何将量化应用于你的PyTorch模型。

什么是量化

典型的神经网络以32位浮点数(float32)精度运行,这意味着激活和权重张量都以float32表示,并且计算也以float32精度执行。量化尝试将模型的精度降低到更紧凑的数据类型,需要更少的内存存储并且执行计算更快,例如,8位整数(int8)。以int8为例,经过量化后,激活和权重张量都可以以int8存储,并且计算将在int8中执行,通常比float32计算更高效。

我们可以将量化视为对模型的一种压缩,但它不是无损压缩,因为较低精度的数据类型可能具有较小的动态范围和分辨率。因此,我们需要在模型的准确性与由量化带来的加速、内存和功耗节省之间进行权衡。

如何使用PyTorch量化

我们如何从浮点模型获得量化模型呢?一般有两种方式:

● 后训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员石磊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值