Spark统计DataFrame每列的缺失率

本文介绍如何使用Scala和Apache Spark SQL统计DataFrame中各列的缺失记录数和缺失率,通过实例展示如何创建DataFrame,统计每列的缺失记录数,计算缺失率并将其转换为DataFrame进行展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

// scala 版本

import org.apache.spark.sql.functions.col

// tax_info 为一个dataframe

val columns=tax_info.columns
val cnt=tax_info.count()

// 统计每列的缺失记录数
val missing_cnt=columns.map(x=>data.select(col(x)).where(col(x).isNull).count)

// 统计每列的缺失率,并保留4位小数
val missing_rate=columns.map(x=>((data.select(col(x)).where(col(x).isNull).count.toDouble/cnt).formatted("%.4f")))

// 将列名和缺失率拼接起来,组成一个dataframe
val  
result=sc.parallelize(missing_cnt.zip(columns)).toDF("missing_rate","column_name")

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值