Redis实现分布式锁的正确姿势

本文围绕Redis实现分布式锁展开。先介绍分布式锁实现需满足互斥性、不死锁等四个条件,接着阐述Redis实现分布式锁的错误加锁和解锁姿势及原因,最后给出正确姿势,包括加锁要保证原子性、设唯一标识,解锁用Lua脚本保证原子性,还提及单机实现对集群或主备有问题待后续分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

  在我们日常工作中,除了Spring和Mybatis外,用到最多无外乎分布式缓存框架——Redis。但是很多工作很多年的朋友对Redis还处于一个最基础的使用和认识。所以我就像把自己对分布式缓存的一些理解和应用整理一个系列,希望可以帮助到大家加深对Redis的理解。本系列的文章思路先从Redis的应用开始。再解析Redis的内部实现原理。最后以经常会问到Redist相关的面试题为结尾。

二、分布式锁的实现要点

 为了实现分布式锁,需要确保锁同时满足以下四个条件:

  1. 互斥性。在任意时刻,只有一个客户端能持有锁
  2. 不会发送死锁。即使一个客户端持有锁的期间崩溃而没有主动释放锁,也需要保证后续其他客户端能够加锁成功
  3. 加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给释放了。
  4. 容错性。只要大部分的Redis节点正常运行,客户端就可以进行加锁和解锁操作。

三、Redis实现分布式锁的错误姿势

3.1 加锁错误姿势

   在讲解使用Redis实现分布式锁的正确姿势之前,我们有必要来看下错误实现方式。

  首先,为了保证互斥性和不会发送死锁2个条件,所以我们在加锁操作的时候,需要使用SETNX指令来保证互斥性——只有一个客户端能够持有锁。为了保证不会发送死锁,需要给锁加一个过期时间,这样就可以保证即使持有锁的客户端期间崩溃了也不会一直不释放锁。

  为了保证这2个条件,有些人错误的实现会用如下代码来实现加锁操作:

/**
     * 实现加锁的错误姿势
     * @param jedis
     * @param lockKey
     * @param requestId
     * @param expireTime
     */
    public static void wrongGetLock1(Jedis jedis, String lockKey, String requestId, int expireTime) {
        Long result = jedis.setnx(lockKey, requestId);
        if (result == 1) {
            // 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁
            jedis.expire(lockKey, expireTime);
        }
    }

  可能一些初学者还没看出以上实现加锁操作的错误原因。这样我们解释下。setnx 和expire是两条Redis指令,不具备原子性,如果程序在执行完setnx之后突然崩溃,导致没有设置锁的过期时间,从而就导致死锁了。因为这个客户端持有的所有不会被其他客户端释放,持有锁的客户端又崩溃了,也不会主动释放。从而该锁永远不会释放,导致其他客户端也获得不能锁。从而其他客户端一直阻塞。所以针对该代码正确姿势应该保证setnx和expire原子性

  实现加锁操作的错误姿势2。具体实现如下代码所示

/**
     * 实现加锁的错误姿势2
     * @param jedis
     * @param lockKey
     * @param expireTime
     * @return
     */
    public static boolean wrongGetLock2(Jedis jedis, String lockKey, int expireTime) {
        long expires = System.currentTimeMillis() + expireTime;
        String expiresStr = String.valueOf(expires);
        // 如果当前锁不存在,返回加锁成功
        if (jedis.setnx(lockKey, expiresStr) == 1) {
            return true;
        }

        // 如果锁存在,获取锁的过期时间
        String currentValueStr = jedis.get(lockKey);
        if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {
            // 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间
            String oldValueStr = jedis.getSet(lockKey, expiresStr);
            if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
                // 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才有权利加锁
                return true;
            }
        }
        // 其他情况,一律返回加锁失败
        return false;
    }

  这个加锁操作咋一看没有毛病对吧。那以上这段代码的问题毛病出在哪里呢?

  1. 由于客户端自己生成过期时间,所以需要强制要求分布式环境下所有客户端的时间必须同步。

  2. 当锁过期的时候,如果多个客户端同时执行jedis.getSet()方法,虽然最终只有一个客户端加锁,但是这个客户端的锁的过期时间可能被其他客户端覆盖。不具备加锁和解锁必须是同一个客户端的特性。解决上面这段代码的方式就是为每个客户端加锁添加一个唯一标示,已确保加锁和解锁操作是来自同一个客户端。

3.2 解锁错误姿势

  分布式锁的实现无法就2个方法,一个加锁,一个就是解锁。下面我们来看下解锁的错误姿势。

  错误姿势1.

/**
     * 解锁错误姿势1
     * @param jedis
     * @param lockKey
     */
    public static void wrongReleaseLock1(Jedis jedis, String lockKey) {
        jedis.del(lockKey);
    }

  上面实现是最简单直接的解锁方式,这种不先判断拥有者而直接解锁的方式,会导致任何客户端都可以随时解锁。即使这把锁不是它上锁的。

  错误姿势2:

/**
     * 解锁错误姿势2
     * @param jedis
     * @param lockKey
     * @param requestId
     */
    public static void wrongReleaseLock2(Jedis jedis, String lockKey, String requestId) {

        // 判断加锁与解锁是不是同一个客户端
        if (requestId.equals(jedis.get(lockKey))) {
            // 若在此时,这把锁突然不是这个客户端的,则会误解锁
            jedis.del(lockKey);
        }

  既然错误姿势1中没有判断锁的拥有者,那姿势2中判断了拥有者,那错误原因又在哪里呢?答案又是原子性上面。因为判断和删除不是一个原子性操作。在并发的时候很可能发生解除了别的客户端加的锁。具体场景有:客户端A加锁,一段时间之后客户端A进行解锁操作时,在执行jedis.del()之前,锁突然过期了,此时客户端B尝试加锁成功,然后客户端A再执行del方法,则客户端A将客户端B的锁给解除了。从而不也不满足加锁和解锁必须是同一个客户端特性。解决思路就是需要保证GET和DEL操作在一个事务中进行,保证其原子性。

四、Redis实现分布式锁的正确姿势

   刚刚介绍完了错误的姿势后,从上面错误姿势中,我们可以知道,要使用Redis实现分布式锁。加锁操作的正确姿势为:

  1. 使用setnx命令保证互斥性
  2. 需要设置锁的过期时间,避免死锁
  3. setnx和设置过期时间需要保持原子性,避免在设置setnx成功之后在设置过期时间客户端崩溃导致死锁
  4. 加锁的Value 值为一个唯一标示。可以采用UUID作为唯一标示。加锁成功后需要把唯一标示返回给客户端来用来客户端进行解锁操作

  解锁的正确姿势为:

  1. 需要拿加锁成功的唯一标示要进行解锁,从而保证加锁和解锁的是同一个客户端

        在此我向大家推荐一个架构学习交流圈:830478757  帮助突破瓶颈 提升思维能力

  2. 解锁操作需要比较唯一标示是否相等,相等再执行删除操作。这2个操作可以采用Lua脚本方式使2个命令的原子性。

  Redis分布式锁实现的正确姿势的实现代码:

public interface DistributedLock {
    /**
     * 获取锁
     * @author zhi.li
     * @return 锁标识
     */
    String acquire();

    /**
     * 释放锁
     * @author zhi.li
     * @param indentifier
     * @return
     */
    boolean release(String indentifier);
}

/**
 * @author zhi.li
 * @Description
 * @created 2019/1/1 20:32
 */
@Slf4j
public class RedisDistributedLock implements DistributedLock{

    private static final String LOCK_SUCCESS = "OK";
    private static final Long RELEASE_SUCCESS = 1L;
    private static final String SET_IF_NOT_EXIST = "NX";
    private static final String SET_WITH_EXPIRE_TIME = "PX";

    /**
     * redis 客户端
     */
    private Jedis jedis;

    /**
     * 分布式锁的键值
     */
    private String lockKey;

    /**
     * 锁的超时时间 10s
     */
    int expireTime = 10 * 1000;

    /**
     * 锁等待,防止线程饥饿
     */
    int acquireTimeout  = 1 * 1000;

    /**
     * 获取指定键值的锁
     * @param jedis jedis Redis客户端
     * @param lockKey 锁的键值
     */
    public RedisDistributedLock(Jedis jedis, String lockKey) {
        this.jedis = jedis;
        this.lockKey = lockKey;
    }

    /**
     * 获取指定键值的锁,同时设置获取锁超时时间
     * @param jedis jedis Redis客户端
     * @param lockKey 锁的键值
     * @param acquireTimeout 获取锁超时时间
     */
    public RedisDistributedLock(Jedis jedis,String lockKey, int acquireTimeout) {
        this.jedis = jedis;
        this.lockKey = lockKey;
        this.acquireTimeout = acquireTimeout;
    }

    /**
     * 获取指定键值的锁,同时设置获取锁超时时间和锁过期时间
     * @param jedis jedis Redis客户端
     * @param lockKey 锁的键值
     * @param acquireTimeout 获取锁超时时间
     * @param expireTime 锁失效时间
     */
    public RedisDistributedLock(Jedis jedis, String lockKey, int acquireTimeout, int expireTime) {
        this.jedis = jedis;
        this.lockKey = lockKey;
        this.acquireTimeout = acquireTimeout;
        this.expireTime = expireTime;
    }

    @Override
    public String acquire() {
        try {
            // 获取锁的超时时间,超过这个时间则放弃获取锁
            long end = System.currentTimeMillis() + acquireTimeout;
            // 随机生成一个value
            String requireToken = UUID.randomUUID().toString();
            while (System.currentTimeMillis() < end) {
                String result = jedis.set(lockKey, requireToken, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);
                if (LOCK_SUCCESS.equals(result)) {
                    return requireToken;
                }
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        } catch (Exception e) {
            log.error("acquire lock due to error", e);
        }

        return null;
    }

    @Override
    public boolean release(String identify) {
    if(identify == null){
            return false;
        }

        String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
        Object result = new Object();
        try {
            result = jedis.eval(script, Collections.singletonList(lockKey),
                Collections.singletonList(identify));
        if (RELEASE_SUCCESS.equals(result)) {
            log.info("release lock success, requestToken:{}", identify);
            return true;
        }}catch (Exception e){
            log.error("release lock due to error",e);
        }finally {
            if(jedis != null){
                jedis.close();
            }
        }

        log.info("release lock failed, requestToken:{}, result:{}", identify, result);
        return false;
    }
}
  下面就以秒杀库存数量为场景,测试下上面实现的分布式锁的效果。具体测试代码如下:

public class RedisDistributedLockTest {
    static int n = 500;
    public static void secskill() {
        System.out.println(--n);
    }

    public static void main(String[] args) {
        Runnable runnable = () -> {
            RedisDistributedLock lock = null;
            String unLockIdentify = null;
            try {
                Jedis conn = new Jedis("127.0.0.1",6379);
                lock = new RedisDistributedLock(conn, "test1");
                unLockIdentify = lock.acquire();
                System.out.println(Thread.currentThread().getName() + "正在运行");
                在此我向大家推荐一个架构学习交流圈:830478757 帮助突破瓶颈 提升思维能力
                secskill();
            } finally {
                if (lock != null) {
                    lock.release(unLockIdentify);
                }
            }
        };

        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(runnable);
            t.start();
        }
    }
}

  运行效果如下图所示。从图中可以看出,同一个资源在同一个时刻只能被一个线程获取,从而保证了库存数量N的递减是顺序的。

  

五、总结

  这样是不是已经完美使用Redis实现了分布式锁呢?答案是并没有结束。上面的实现代码只是针对单机的Redis没问题。但是现实生产中大部分都是集群的或者是主备的。但上面的实现姿势在集群或者主备情况下会有相应的问题。这里先买一个关子,在后面一篇文章将详细分析集群或者主备环境下Redis分布式锁的实现方式。

 

原址 https://my.oschina.net/u/4052893/blog/3004009

<think>好的,用户想了解Redis分布式锁,我需要先理清这个概念,然后组织一个清晰的回答。首先,什么是分布式锁?为什么需要它?在分布式系统中,多个服务实例可能需要协调对共享资源的访问,这时候就需要一个跨进程的锁机制。而Redis作为常用的内存数据库,常被用来实现这样的锁。 接下来,我应该介绍Redis分布式锁的基本原理。核心是使用SET命令和NX、PX参数,这样可以确保只有一个客户端能获取锁。这里需要解释NX表示不存在时才设置,PX设置过期时间,防止死锁。同时,要提到锁的释放机制,确保只有锁的持有者才能删除它,通常用Lua脚本来保证原子性。 然后,可能需要讨论一些常见的问题和解决方案。比如,锁的续期问题,如果业务执行时间超过锁的过期时间怎么办?这里可以引入看门狗机制,自动延长锁的持有时间。另外,Redis集群环境下的问题,比如主从复制延迟导致的锁失效,这时候RedLock算法可能被提及,但也要说明它的争议和复杂性,以及是否真的需要用到。 还要注意实际应用中的最佳实践,比如设置合理的过期时间,避免过短或过长,确保业务逻辑的幂等性,以及处理网络分区的情况。可能还需要对比其他分布式锁实现,比如基于ZooKeeper的方案,简要说明各自的优缺点,让用户有更全面的了解。 用户可能对实现细节感兴趣,所以给出一个简单的代码示例会有帮助。比如用Redis的SET命令加锁,用Lua脚本释放锁。但要注意强调原子操作的重要性,以及避免常见的错误,比如误解EX和PX参数的区别,或者忘记验证锁的值。 另外,需要提醒用户注意Redis分布式锁的适用场景,它可能不适合对一致性要求极高的系统,因为Redis的异步复制特性可能导致锁的状态在故障转移时丢失。在这种情况下,可能需要更强大的协调服务。 最后,总结一下Redis分布式锁的优缺点,以及使用时的注意事项,帮助用户做出合适的选择。确保回答结构清晰,逐步深入,覆盖关键点,同时语言通俗易懂,避免过于技术化的术语,让不同层次的读者都能理解。</think>以下是关于Redis分布式锁的逐步讲解: 一、为什么需要分布式锁? - 分布式系统中多个服务实例需要互斥访问共享资源(如数据库写操作) - 单机锁(如Java的synchronized)无法跨进程生效 - 典型案例:订单超卖防止、定时任务防重复执行 二、Redis分布式锁核心原理 1. 基础命令组合 ```shell SET key random_value NX PX 30000 ``` - NX:仅当key不存在时设置 - PX:设置过期时间(单位毫秒) - random_value需保证全局唯一(推荐UUID) 2. 释放锁的正确姿势(Lua脚本保证原子性) ```lua if redis.call("get",KEYS[1]) == ARGV[1] then return redis.call("del",KEYS[1]) else return 0 end ``` 三、关键问题与解决方案 1. 锁过期时间问题 - 风险:业务未完成但锁已过期 - 解决方案: - 合理设置超时时间(建议比业务平均耗时多20%) - 看门狗机制(续期线程定期延长锁时间) 2. 集群环境问题 - 主从切换可能导致锁丢失 - RedLock算法(需部署奇数个独立Redis节点): 1. 顺序向所有节点请求加锁 2. 当半数以上节点加锁成功,且总耗时小于锁有效期时视为成功 3. 释放时向所有节点发送删除请求 四、最佳实践建议 1. 设置唯一客户端标识(防止误删其他客户端锁) 2. 重试策略需设置: - 最大重试次数 - 随机退避时间(避免惊群效应) 3. 业务代码需幂等处理 4. 监控锁等待时间(超过阈值报警) 五、代码示例(Python) ```python import redis import uuid conn = redis.Redis() def acquire_lock(lock_name, acquire_timeout=10): identifier = str(uuid.uuid4()) end = time.time() + acquire_timeout while time.time() < end: if conn.set(lock_name, identifier, nx=True, px=10000): return identifier time.sleep(0.001) return False def release_lock(lock_name, identifier): unlock_script = """ if redis.call("get",KEYS[1]) == ARGV[1] then return redis.call("del",KEYS[1]) else return 0 end""" return conn.eval(unlock_script, 1, lock_name, identifier) ``` 六、注意事项 1. 避免长时间持锁(建议<1秒) 2. 网络分区时可能产生脑裂问题 3. 非100%可靠,重要业务需配合数据库乐观锁 4. 高并发场景建议结合队列使用 建议根据实际业务压力进行压测,推荐使用Redisson等成熟客户端库而非自行实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值