多模态相关论文笔记

本文介绍了一种名为CLIP的方法,通过自然语言监督训练出更有效、零样本表现更强的视觉模型。CLIP采用对比目标函数,结合ResNet和Transformer,通过多模态嵌入空间学习,优化了模型性能和计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(cilp) Learning Transferable Visual Models From Natural Language Supervision

从自然语言监督中学习可迁移的视觉模型
openAI 2021年2月 48页
PDF
CODE
CLIP(Contrastive Language-Image Pre-Training)对比语言图像预训练模型

引言

它比ImageNet模型效果更好,计算效率更高。尤其是zero-shot能力更强。

方法

选择一个高效的预训练策略

最初的想法类似于VirTex,联合训练一个图像CNN和文本Transformer预测一张图片的标题。但是很难预测到最准确的词汇。因此将预测目标函数改为了对比目标函数。

给定一个batch里的N个图文对(图片,文本),CLIP用来预测N×N个实际可能发生的图文对。为此,CLIP通过联合训练图片编码器和文本编码器学习了一个多模态的embedding空间,来最大化这N个真实图文对中图片和文本embedding之间的cosine相似度,同时最小化错误对的cosine相似度。损失函数:SCE 对称交叉熵
只使用了一个线性投影将各编码器表示汇集到多模态embedding空间中。简化了很多模块。架构图如图所示。

伪代码:

# ima
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值