数据挖掘---分类算法之K近邻(KNN)算法

本文介绍了K近邻(KNN)算法的基本原理及实现过程,包括计算距离、选择最近邻点、分类决策等步骤,并通过示例代码展示了算法的具体应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        K近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
        算法的步骤如下:
        1,计算已知类别数据集中的点与当前点之间的距离;
        2,按照距离递增次序排序;
        3,选取与当前点距离最小的K个点;
        4,确定前K个点所在类别的出现频率;
        5,返回前K个点出现频率最高的类别作为当前点的预测分类。

        KNN 算法本身简单有效,它是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,那么 KNN 的分类时间复杂度为O(n)。

        KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

        K 近邻算法使用的模型实际上对应于对特征空间的划分。K 值的选择,距离度量和分类决策规则是该算法的三个基本要素:
1. K 值的选择会对算法的结果产生重大影响。K值较小意味着只有与输入实例较近的训练实例才会对预测结果起作用,但容易发生过拟合;如果 K 值较大,优点是可以减少学习的估计误差,但缺点是学习的近似误差增大,这时与输入实例较远的训练实例也会对预测起作用,是预测发生错误。在实际应用中,K 值一般选择一个较小的数值,通常采用交叉验证的方法来选择最优的 K 值。随着训练实例数目趋向于无穷和 K=1 时,误差率不会超过贝叶斯误差率的2倍,如果K也趋向于无穷,则误差率趋向于贝叶斯误差率。

2. 该算法中的分类决策规则往往是多数表决,即由输入实例的 K 个最临近的训练实例中的多数类决定输入实例的类别

3. 距离度量一般采用 Lp 距离,当p=2时,即为欧氏距离,在度量之前,应该将每个属性的值规范化,这样有助于防止具有较大初始值域的属性比具有较小初始值域的属性的权重过大。
       KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。 该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。

       该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

       说了这么多理论,咱来点实际的,下面用代码实现了简单的KNN。

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import java.util.TreeSet;

public class KNN {
	public static java.text.DecimalFormat df = new java.text.DecimalFormat("#0.00");
	/**K Nearest Neighbour
	 * 计算给定点到每个点的距离,选择距离最近的K个点,看K个点属于哪个类别最多,则该给定点也属于该类别
	 * */
	public static String CLS_SFX = "类";
	public int K;
	public List<KPoint> allData;

	@SuppressWarnings("rawtypes")
	public void knn(KPoint xpoint) {
		TreeSet<KPoint> ts = new TreeSet<KPoint>();
		//1.计算xpoint到每个点的距离,放到TreeSet中根据距离排序
		for (int i = 0; i < allData.size(); i++) {
			KPoint p = allData.get(i);
			double dis = getDistance(p, xpoint);
			p.dis = dis;
			ts.add(p);
		}
		for (Iterator it = ts.iterator(); it.hasNext();) {
			System.out.println(df.format(((KPoint) it.next()).dis));
		}
		KPoint ps[] = (KPoint[]) ts.toArray(new KPoint[0]);
		Map<String,Integer> voteMap = new TreeMap<String,Integer>();
		//2.选择K个最近的,类别投票
		for (int i = 0; i < K; i++) {
			System.out.println((i + 1) + "---" + ps[i]);
			int cnt = 1;
			if (voteMap.containsKey(ps[i].label)) {
				cnt = ((Integer) voteMap.get(ps[i].label)).intValue() + 1;
			}
			voteMap.put(ps[i].label, cnt);
		}
		//3.得到最多投票
		String votes[] = (String[]) voteMap.keySet().toArray(new String[0]);
		TreeSet<VoteResult> result = new TreeSet<VoteResult>();
		for (String vote : votes) {
			result.add(new VoteResult(vote, (int) voteMap.get(vote)));
		}
		System.out.println("Result=" + ((VoteResult) result.first()).label);

	}

	//简单计算距离
	public static double getDistance(KPoint a, KPoint b) {
		return Math.sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
	}

	public static void main(String[] args) {
		KNN kn = new KNN();
		kn.K = 3;
		List<KPoint> data = new ArrayList<KPoint>();
		data.add(new KPoint(1, 1, CLS_SFX + "A"));
		data.add(new KPoint(1.1, 1.1, CLS_SFX + "A"));
		data.add(new KPoint(10, 10, CLS_SFX + "B"));
		data.add(new KPoint(10.1, 10.1, CLS_SFX + "B"));
		data.add(new KPoint(10.1, 10.13, CLS_SFX + "B"));
		 for (int i = 0; i < 10; i++) {
		// data.add(new KPoint(Math.random(),Math.random()));
		 }
		kn.allData = data;

		kn.knn(new KPoint(0.1, 0.4));
	}

}

class VoteResult implements java.lang.Comparable<VoteResult> {
	public String label;
	public int count;

	public VoteResult(String label, int count) {
		super();
		this.label = label;
		this.count = count;
	}
        //比较得票数量
	@Override
	public int compareTo(VoteResult kp) {
		if (this.count > kp.count) {
			return -1;
		} else if (this.count < kp.count) {
			return 1;
		} else
			return 0;
	}

}

class KPoint implements java.lang.Comparable<KPoint> {
	public double x;
	public double y;
	public String label;
	public double dis;

	public KPoint() {
		this.x = 0.0;
		this.y = 0.0;
	}

	public KPoint(double x, double y) {
		super();
		this.x = x;
		this.y = y;
	}

	public KPoint(double x, double y, String label) {
		super();
		this.x = x;
		this.y = y;
		this.label = label;
	}

	public String toString() {
		return "(" + KNN.df.format(x) + "," + KNN.df.format(y) + "," + label + ","
				+ KNN.df.format(dis) + ")";
	}
        //比较距离
	@Override
	public int compareTo(KPoint kp) {
		if (this.dis > kp.dis) {
			return 1;
		} else if (this.dis < kp.dis) {
			return -1;
		} else
			return 0;
	}

}



<think>嗯,用户现在在问关于数据挖掘中的k-近邻算法的原理与实践,特别是教学平台头歌的答案。首先,我需要确认用户的需求是什么。看起来他们可能在寻找学习资料或者答案,可能是在做相关的课程作业或者实验,需要理解k-近邻算法的原理和如何在实践中应用,尤其是在头歌这样的教学平台上。 首先,我应该回顾k-近邻算法的基本原理。记得k-NN是一种基于实例的学习算法,属于懒惰学习,因为它不会显式地学习模型,而是在预测时进行计算。原理部分需要包括k值的选择、距离度量方法(比如欧氏距离、曼哈顿距离等),以及分类和回归时的决策规则。还有优缺点,比如计算量大、需要存储所有数据这些点。 然后,用户提到了实践部分,可能想知道如何在教学平台上实现这个算法。可能需要提供代码示例,比如Python的实现步骤,或者参考头歌平台上的具体要求。根据用户提供的引用,特别是引用[4]提到需要找到最近的k个样本的标签,返回列表,这说明可能需要编写一个函数来计算距离并找出最近的邻居。 接下来,用户可能需要关于教学平台答案的指导,但直接给出答案可能不太合适,应该引导他们理解原理然后自己实现。例如,引用[4]中的通关条件是需要正确返回最近的k个样本的标签,这可能涉及到距离计算和排序,然后选取前k个结果。 另外,用户提供的引用[1]和[2]也提到了k-近邻算法分类中的应用,如手写数字识别,以及算法的优缺点,这些可以作为回答的内容,用来解释原理和实际应用场景。同时,引用[3]提到信息增益在决策树中的应用,但可能和k-NN关系不大,不过需要注意不要混淆这两个算法。 需要确保回答结构清晰,分点解释原理、实现步骤、优缺点和应用场景,然后生成相关问题。同时,要符合用户的要求,使用正确的中文和LaTeX格式,比如行内公式用$...$,独立公式用$$...$$。例如,欧氏距离公式应该用LaTeX正确表示。 可能还需要注意用户提到的教学平台“头歌”,可能需要针对该平台的特点给出建议,比如如何在该平台上完成k-NN的实验,可能需要导入库、处理数据、实现核心算法步骤等。根据引用[4]中的代码要求,可能需要编写一个函数,输入样本、训练数据、k值,返回最近的k个标签列表。 最后,生成的相关问题需要围绕k-NN展开,比如参数调优、距离度量对比、处理大数据方法、与决策树的比较等,这些能帮助用户更深入地理解算法。 总结一下,回答的结构应该是: 1. 算法原理:k值、距离度量、决策规则 2. 实现步骤:数据预处理、距离计算、排序、选择k个邻居、多数表决或平均 3. 优缺点:存储和计算问题,无法解释模型 4. 应用场景:分类和回归,比如推荐系统、手写识别 5. 教学平台实践建议:代码示例,注意距离函数和排序 6. 相关问题:围绕原理、优化、应用、对比等 需要确保所有数学表达式正确使用LaTeX,比如欧氏距离写成$\sqrt{\sum_{i=1}^n (x_i - y_i)^2}$,并检查引用是否正确标注,比如引用[1]和[2]提到的存储和计算问题,以及引用[4]的代码要求。</think>### 数据挖掘中的k-近邻算法原理与实践 #### 一、算法原理 1. **核心思想** k-近邻(k-NN)算法是一种基于实例的监督学习方法,通过测量样本间的距离进行分类或回归。对于新样本,算法在训练集中找到其最近的$k$个邻居,以这些邻居的标签(多数表决)或值(平均值)作为预测结果[^1]。 2. **关键参数与公式** - **k值选择**:较小的$k$(如1)对噪声敏感,较大的$k$可能模糊类别边界。 - **距离度量**:常用方法包括: - 欧氏距离:$$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$ - 曼哈顿距离:$$d(x,y) = \sum_{i=1}^n |x_i - y_i|$$ - **决策规则**: - 分类任务:多数表决法。 - 回归任务:取$k$个邻居的平均值[^2]。 #### 二、实践步骤(以分类为例) 1. **数据预处理** 标准化或归一化特征,避免某些特征因量纲差异主导距离计算。 2. **代码实现(Python示例)** ```python import numpy as np def knn_classify(test_sample, train_data, labels, k): # 计算欧氏距离 distances = np.sqrt(np.sum((train_data - test_sample)**2, axis=1)) # 获取最近的k个样本的索引 nearest_indices = np.argsort(distances)[:k] # 提取对应标签并统计 nearest_labels = labels[nearest_indices] return np.bincount(nearest_labels).argmax() ``` 3. **教学平台(如头歌)实践要点** - 需按平台要求实现特定函数(如返回最近的$k$个样本标签列表)[^4]。 - 注意数据格式转换(例如图像数据需转为向量)。 #### 三、优缺点分析 - **优点**:简单易实现,无需训练过程,适用于多分类任务。 - **缺点**: - 存储开销大:需保存全部训练数据[^1]。 - 计算复杂度高:预测时需遍历所有样本。 - 无法提供特征重要性等解释性信息[^2]。 #### 四、应用场景 - **分类任务**:手写数字识别(如MNIST数据集)。 - **回归任务**:房价预测。 - **推荐系统**:基于用户相似度的协同过滤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值