服务器部署diffusion大模型并生成图片

安装相关库以及依赖

如果不想翻墙或者设置hugging face网站的token的话,可以选择本地安装相关库和依赖。

安装diffusers等相关库和依赖

通过GitHubhttps://github.com/huggingface/diffusers下载源码,上传服务器,打开终端,激活相关anaconda环境或者新建一个虚拟环境,进入diffusers根目录,终端输入

pip install -e .

通过以上代码本地安装好依赖后基本ok了,如果想后面微调diffusion相关大模型的话,可以cd进入examples/dreambooth文件夹,终端输入:

pip install -r requirement_sdxl.txt

代码后面加上对应镜像源就ok了。

部署大模型

可以选择在图片生成过程中在线下载大模型,不过一般需要设置令牌,我选择的是下载对应的大模型部署到服务器,然后本地调用。
在https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0官方链接下载模型,上传至服务器,然后运行以下代码:

from diffusers import DiffusionPipeline
import torch

# load both base & refiner
base = DiffusionPipeline.from_pretrained(
    "本地路径/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
base.to("cuda")
refiner = DiffusionPipeline.from_pretrained(
    "本地路径/stable-diffusion-xl-refiner-1.0",
    text_encoder_2=base.text_encoder_2,
    vae=base.vae,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
)
refiner.to("cuda")

# Define how many steps and what % of steps to be run on each experts (80/20) here
n_steps = 40
high_noise_frac = 0.8

prompt = "A majestic lion jumping from a big stone at night"

# run both experts
image = base(
    prompt=prompt,
    num_inference_steps=n_steps,
    denoising_end=high_noise_frac,
    output_type="latent",
).images
image = refiner(
    prompt=prompt,
    num_inference_steps=n_steps,
    denoising_start=high_noise_frac,
    image=image,
).images[0]

以上代码运行成功后就可以了。

生成图片

本次我们以生成赛博猫咪为主题的图片,以下的正面词和负面词
正面词prompt1

(highest quality), masterpiece, intricate, high detail, professional photo, 8k uhd, sharp focus, (realistic photograph:1.2), (half a cat, half a futuristic cyborg white porcelain AI cat, in a vrtual high tech environment:1.2), bright environment

正面词prompt2

cybernetic cat wears futuristic armor, in a battlefield

负面词Negative Prompt

deformed iris, deformed pupils, (semi-realistic, cgi, 2.5d, 3d, sketch, cartoon, drawing, anime:1.2), frame, mirror, polaroid, dark environment

因显存有限,生成图片为高768,宽512的尺寸。在这里插入图片描述
在这里插入图片描述

如果不对,欢迎指出,谢谢!

<think>好的,我需要帮助用户了解如何在本地部署Stable Diffusion模型。根据用户提供的引用信息,我需要整理出步骤确保正确引用来源。首先,我应该检查用户提供的三个引用,看看里面有没有具体的部署步骤。引用1提到模型需要放在models\Stable-diffusion文件夹中,重命名为model.ckpt。引用2给出了一个具体的路径示例,提到安装GFPGAN。引用3说明Stable Diffusion本身没有UI,需要依赖其他工具,比如sd-webui。 接下来,我需要将这些信息结构化。可能步骤包括:环境准备、下载模型、配置目录、安装依赖、启动Web UI等。同时要注意用户可能遇到的常见问题,比如路径错误、依赖安装失败等。需要确保每个步骤都正确引用对应的来源,比如引用1和2关于模型放置的位置,引用3关于Web UI的必要性。 另外,用户可能需要可视化界面,所以应该推荐sd-webui这样的工具,指导如何配置。在注意事项部分,要提到硬件要求、模型版本和网络配置,这些可能影响部署成功与否。最后生成相关问题,帮助用户深入理解。</think>### 本地化部署 Stable Diffusion 模型的方法 #### 1. **环境准备** - **操作系统**:推荐使用 Windows 10/11 或 Linux 系统。 - **硬件要求**:至少 8GB 显存的 NVIDIA 显卡(如 RTX 3060 及以上),16GB 内存,20GB 以上硬盘空间[^3]。 - **依赖安装**:安装 Python 3.10.x、Git 和 CUDA 工具包(版本需与显卡驱动兼容)。 #### 2. **下载模型文件** - 从官方渠道(如 Hugging Face)下载 Stable Diffusion 预训练模型(例如 `stable-diffusion-v1-4.ckpt`)[^1]。 - 将模型文件重命名为 `model.ckpt`,放置在 `sd-webui/models/Stable-diffusion` 目录下(例如 `D:\stable-diffusion-webui\models\Stable-diffusion`)[^2]。 #### 3. **部署可视化界面** Stable Diffusion 原生仅支持命令行操作,推荐使用第三方 Web UI 工具(如 `stable-diffusion-webui`)简化流程: ```bash # 克隆仓库 git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui # 安装依赖(自动执行) webui.bat ``` 首次运行时会自动安装 PyTorch、GFPGAN 等依赖库。 #### 4. **启动与访问** - 运行 `webui.bat` 后,程序将启动本地服务器(默认地址 `http://localhost:7860`)。 - 在浏览器中输入地址即可进入图形化界面,支持文生图、图生图等功能。 #### 5. **常见问题解决** - **模型加载失败**:检查模型文件路径和命名是否准确[^1]。 - **显存不足**:降低生成图片的分辨率或使用 `--medvram` 参数启动。 - **依赖冲突**:创建 Python 虚拟环境隔离依赖(Web UI 通常自动处理)。 #### 6. **高级配置** - **插件扩展**:安装 ControlNet、LoRA 等插件增强功能。 - **远程访问**:修改启动参数 `--listen` 允许局域网访问。 --- ### 注意事项 1. **模型版本兼容性**:不同 Web UI 版本对模型格式可能有要求,需匹配 `.ckpt` 或 `.safetensors` 格式。 2. **网络配置**:若需从外部访问,需配置防火墙规则或使用反向代理。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值