Tensor的属性 稀疏张量

本文介绍了PyTorch中Tensor的三个核心属性:dtype、device和layout,以及如何创建和转换稀疏张量。通过示例展示了在CPU和CUDA设备上创建张量,并演示了如何将稀疏张量转换为稠密张量。对于深度学习开发者来说,理解和掌握这些基础知识至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensor中有属性torch.dtype(数据类型), torch.device(对象创建后存储在的设备名称) torch.layout(torch.Tensor内存布局的对象)三种属性

torch.Tensor([1,2,3],dtype=torch.float32,device=torch.device('cpu'))

torch.sparse_coo_tensor 定义稀疏的张量

默认cpu

 使用cuda

三个参数

稀疏张量

 稀疏转成稠密

 增加2个参数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值