2018.3.10
1.生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
- 生成器的第一种写法:
把列表生成式的[]
改成()
就是一个generator
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>>
用next()算下一个值太恶心了,generator是一个可迭代对象
for t in g:
print(t)
- 生成器的第二种写法
拿fib函数举个例子
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
这种递推的逻辑改成generator很方便:
def fib(max):
n,a,b = 0,0,1
while n < max:
yield b
a,b = b,a+b
n = n+1
return 'done'
这里的yield就是一个generator区别于函数的地方.如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator.在调用过一个generator函数后,返回的实际上是一个generator对象.
>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>
挂一个很巧妙地generator用来打印杨辉三角:
def triangle():
l = [1]
while 1:
yield l
l = [1] + [ l[n] + l[n+1] for n in range(len(l)-1) ] + [1]
2.迭代器
可以直接作用于for循环的对象统称为可迭代对象:Iterable。
可以使用isinstance()判断一个对象是否是Iterable对象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator
- 生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
- 把list、dict、str等Iterable变成Iterator可以使用iter()函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
- Python的for循环本质上就是通过不断调用next()函数实现的
for it in range(6):
pass
这一段for循环实际上就等价成:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break
3. 函数式编程
函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。**函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!**Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言。