提升Graph-RAG查询生成的提示策略

提升Graph-RAG查询生成的提示策略

在这篇文章中,我们将深入探讨如何优化在图数据库中生成查询的提示策略。我们的重点是如何在提示中获取与数据库特定信息相关的内容,以提高查询的准确性和效率。我们将以Neo4j数据库为示例,演示如何将自然语言问题转换为有效的Cypher查询。

引言

随着数据量的增加,图数据库成为处理复杂连接数据的一种强大工具。然而,生成正确的查询语句可能并不简单。良好的提示策略可以显著提高机器学习模型生成正确查询的能力。本文旨在提供一些实用的方法和代码示例,帮助你优化提示策略,从而更好地与图数据库进行交互。

主要内容

设置环境

首先,我们需要安装必要的包并设置环境变量:

%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

注意:在使用更新的包时,可能需要重启内核。

我们默认使用OpenAI模型,但你可以根据需求选择其他模型提供商。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

# 如果需要使用LangSmith,取消下面的注释。不一定需要。
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"

接下来,定义Neo4j的凭证。

os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

导入电影数据示例

我们将借助以下代码创建与Neo4j数据库的连接,并填充一些关于电影及其演员的示例数据:

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""
graph.query(movies_query)

过滤图模式

有时候,我们需要在生成Cypher语句时专注于图模式的特定子集。例如,如果我们希望从模式表示中排除Genre节点,可以使用GraphCypherQAChain链的exclude_types参数。

from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
    graph=graph, llm=llm, exclude_types=["Genre"], verbose=True
)

少样本示例

为模型提供少量的自然语言问题与其相应的Cypher查询示例,往往可以提高模型对于复杂查询的表现。

examples = [
    {
        "question": "How many artists are there?",
        "query": "MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)",
    },
    // 更多示例...
]

from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

example_prompt = PromptTemplate.from_template(
    "User input: {question}\nCypher query: {query}"
)
prompt = FewShotPromptTemplate(
    examples=examples[:5],
    example_prompt=example_prompt,
    prefix="You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.\n\nHere is the schema information\n{schema}.\n\nBelow are a number of examples of questions and their corresponding Cypher queries.",
    suffix="User input: {question}\nCypher query: ",
    input_variables=["question", "schema"],
)

动态少样本示例

如果有足够的示例,可以动态选择与输入最相关的示例以减少模型的上下文窗口或避免长尾示例对模型的干扰。

from langchain_community.vectorstores import Neo4jVector
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings

example_selector = SemanticSimilarityExampleSelector.from_examples(
    examples,
    OpenAIEmbeddings(),
    Neo4jVector,
    k=5,
    input_keys=["question"],
)

代码示例

prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.\n\nHere is the schema information\n{schema}.\n\nBelow are a number of examples of questions and their corresponding Cypher queries.",
    suffix="User input: {question}\nCypher query: ",
    input_variables=["question", "schema"],
)

print(prompt.format(question="how many artists are there?", schema="foo"))

常见问题和解决方案

  1. 访问限制问题:由于某些地区的网络限制,开发者在使用API时可能需要考虑API代理服务来提高访问稳定性。例如,可以通过设置{AI_URL}作为API端点来确保连接稳定。

  2. 查询结果不准确:确保你使用的示例足够相关,并且模式信息准确无误。

总结和进一步学习资源

本文介绍了如何通过优化提示策略来提高图数据库查询的生成效果。为进一步学习,建议阅读以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

<think>我们正在处理一个关于.NET环境中图处理(Graph Processing)和检索增强生成RAG)技术的问题。用户希望了解.NET生态中相关的技术或框架。 根据引用[1]中提到的GRAG(图检索增强生成)概念,它旨在解决传统RAG在处理网络化文档(如引用图、社交媒体和知识图谱)时的不足。因此,用户可能对如何在.NET中实现类似的图检索增强生成技术感兴趣。 在.NET生态中,图处理通常涉及图数据库或图计算库,而RAG则通常与大型语言模型(LLMs)结合使用。因此,我们可以从以下两个方面来回答: 1. .NET中的图处理技术:包括图数据库和图形计算库。 2. 如何在.NET中实现RAG,特别是结合图处理(即GRAG)。 ### .NET中的图处理技术 #### 图数据库 - **Neo4j**:一个流行的图数据库,提供了.NET驱动程序(Neo4j.Driver)。开发者可以轻松地在.NET应用程序中使用Neo4j存储和查询图数据。 - 示例:使用C#连接Neo4j并执行Cypher查询。 ```csharp using Neo4j.Driver; public class Neo4jExample { public static async Task Main(string[] args) { using var driver = GraphDatabase.Driver("bolt://localhost:7687", AuthTokens.Basic("neo4j", "password")); using var session = driver.AsyncSession(); var result = await session.RunAsync("MATCH (n) RETURN count(n) AS count"); var record = await result.SingleAsync(); Console.WriteLine(record["count"]); } } ``` - **Microsoft Azure Cosmos DB**:支持图数据模型(Gremlin API)。通过Gremlin.NET库,可以在.NET中操作Cosmos DB的图数据。 - 示例:使用Gremlin.NET查询Cosmos DB。 ```csharp using Gremlin.Net.Driver; var gremlinServer = new GremlinServer("your-cosmosdb-endpoint.gremlin.cosmos.azure.com", 443, true, "/dbs/your-db/colls/your-graph", "your-primary-key"); using var gremlinClient = new GremlinClient(gremlinServer); var result = await gremlinClient.SubmitAsync<dynamic>("g.V().count()"); Console.WriteLine(result.FirstOrDefault()); ``` #### 图计算库 - **QuickGraph**:一个.NET图算法库,支持多种图结构和算法(如最短路径、最小生成树等)。 - 示例:使用QuickGraph计算最短路径。 ```csharp using QuickGraph; using QuickGraph.Algorithms; var graph = new AdjacencyGraph<string, Edge<string>>(); graph.AddVertices(new[] { "A", "B", "C", "D" }); graph.AddEdge(new Edge<string>("A", "B")); graph.AddEdge(new Edge<string>("B", "C")); graph.AddEdge(new Edge<string>("A", "D")); graph.AddEdge(new Edge<string>("D", "C")); var edgeCost = new Dictionary<Edge<string>, double> { { new Edge<string>("A", "B"), 1 }, { new Edge<string>("B", "C"), 2 }, { new Edge<string>("A", "D"), 4 }, { new Edge<string>("D", "C"), 1 } }; var dijkstra = graph.ShortestPathsDijkstra(e => edgeCost[e], "A"); dijkstra("C", out var path); // path将包含从A到C的边序列 ``` ### 在.NET中实现RAG(特别是结合图处理) 检索增强生成RAG)在.NET中的实现通常涉及以下步骤: 1. **检索**:从数据源中检索相关信息。 2. **增强**:将检索到的信息与用户查询结合,形成增强的提示(prompt)。 3. **生成**:使用LLM生成最终响应。 当数据源是图数据库(如Neo4j或Cosmos DB)时,我们可以实现图检索增强生成(GRAG)。此时,检索阶段会执行图查询(如Cypher或Gremlin),获取相关的子图,然后将子图的信息(包括拓扑结构)整合到提示中。 #### 示例:GRAG在.NET中的实现框架 假设我们有一个知识图谱存储在Neo4j中,我们希望根据用户查询检索相关子图,然后使用LLM生成回答。 步骤: 1. 解析用户查询生成查询语句(如Cypher)。 2. 执行查询,获取相关节点和关系(子图)。 3. 将子图转换为文本表示(例如,节点和关系的自然语言描述)。 4. 将原始查询和子图文本一起输入LLM,生成回答。 代码框架: ```csharp using Neo4j.Driver; using OpenAI_API; // 假设使用OpenAI的LLM public class GRAGExample { private readonly IDriver _driver; private readonly OpenAIAPI _openAiApi; public GRAGExample(string neo4jUri, string username, string password, string openAiApiKey) { _driver = GraphDatabase.Driver(neo4jUri, AuthTokens.Basic(username, password)); _openAiApi = new OpenAIAPI(openAiApiKey); } public async Task<string> QueryAsync(string userQuery) { // 步骤1:将用户查询转换为Cypher查询(这里简化,实际可能使用NLP技术) string cypherQuery = GenerateCypherQuery(userQuery); // 步骤2:执行Cypher查询,获取子图 var subgraphText = await RetrieveSubgraphAsync(cypherQuery); // 步骤3:构建提示 string prompt = $@"基于以下知识图谱信息,回答用户问题。 用户问题:{userQuery} 知识图谱信息: {subgraphText}"; // 步骤4:调用LLM生成回答 var result = await _openAiApi.Completions.CreateCompletionAsync( new CompletionRequest(prompt, model: "gpt-3.5-turbo-instruct", max_tokens: 200)); return result.Completions[0].Text; } private async Task<string> RetrieveSubgraphAsync(string cypherQuery) { using var session = _driver.AsyncSession(); var result = await session.RunAsync(cypherQuery); var records = await result.ToListAsync(); // 将查询结果(子图)转换为文本描述 var sb = new StringBuilder(); foreach (var record in records) { // 根据实际查询结果的结构进行转换 // 例如,如果查询返回节点和关系,可以描述它们 sb.AppendLine(record.ToString()); } return sb.ToString(); } // 简化:实际中可能需要更复杂的转换,这里仅返回固定查询示例 private string GenerateCypherQuery(string userQuery) { // 这里只是一个示例,实际应用可能需要更复杂的NLP解析 return "MATCH (n)-[r]->(m) WHERE n.name CONTAINS 'Microsoft' RETURN n, r, m LIMIT 10"; } } ``` ### 注意事项 - **图查询的构建**:将自然语言查询转换为图查询(如Cypher)是一个复杂的过程,可能需要使用额外的NLP模型(如意图识别、实体识别)。 - **子图文本化**:如何将图结构(包括节点、关系及其属性)有效地转换为自然语言文本,以便LLM理解,是GRAG的关键。可以尝试不同的文本化策略(如邻接表、三元组列表等)。 - **LLM的选择**:在.NET中,可以通过API调用外部LLM(如OpenAI、Azure OpenAI)或使用本地部署的模型(如通过ONNX运行时)。 ### 总结 在.NET中实现图检索增强生成(GRAG)涉及以下技术栈: - 图数据库:如Neo4j(通过Neo4j.Driver)或Azure Cosmos DB(通过Gremlin.NET)。 - 图计算库:如QuickGraph,用于在内存中处理图数据。 - LLM集成:通过HTTP客户端或SDK(如OpenAI的.NET库)调用LLM。 通过结合图数据库的检索能力和LLM的生成能力,可以构建能够处理复杂网络化文档的智能应用。 §§相关问题§§ 1. 如何在.NET中使用Neo4j进行图数据检索? 2. 如何将图数据库的查询结果转换为适合LLM处理的文本? 3. 在GRAG中,如何优化图查询以提高检索效率? 4. .NET中有哪些开源的LLM集成方案?</think>### .NET 中的图处理与检索增强生成RAG)技术 在 .NET 生态中,图处理(Graph Processing)和检索增强生成RAG)技术的结合主要通过以下框架和工具实现: --- #### 1. **图数据库集成** - **Neo4j .NET Driver** 官方支持的驱动程序,用于在 .NET 应用中操作 Neo4j 图数据库: ```csharp using var driver = GraphDatabase.Driver("bolt://localhost:7687", AuthTokens.Basic("user", "pass")); using var session = driver.AsyncSession(); var result = await session.RunAsync("MATCH (n:Person) RETURN n.name"); ``` 支持 Cypher 查询语言,适合存储知识图谱和关系网络[^1]。 - **Azure Cosmos DB (Gremlin API)** 微软官方支持的图数据库服务,通过 Gremlin.NET 驱动操作: ```csharp var gremlinClient = new GremlinClient( new GremlinServer("your-cosmosdb-endpoint.gremlin.cosmos.azure.com", 443, true, "/dbs/db/colls/graph", "your-key") ); var response = await gremlinClient.SubmitAsync<dynamic>("g.V().hasLabel('Person')"); ``` 适用于大规模分布式图数据处理[^2]。 --- #### 2. **RAG 实现框架** - **Microsoft Semantic Kernel** .NET 官方的 AI 编排框架,支持 RAG 工作流: ```csharp var kernel = Kernel.CreateBuilder() .AddAzureOpenAIChatCompletion("gpt-4", "your-endpoint", "your-key") .Build(); // 添加图数据库检索插件 kernel.ImportPluginFromObject(new GraphRetrievalPlugin(neo4jDriver)); // 执行 RAG 查询 var result = await kernel.InvokePromptAsync( "基于知识图谱回答:{{$query}}", new() { ["query"] = "微软的创始人是谁?" } ); ``` 支持自定义插件,可将图查询结果注入 LLM 上下文[^1]。 - **LangChain.NET** .NET 版的 LangChain 实现,提供 RAG 链式工具: ```csharp var chain = Chain.Set("query", "比尔·盖茨的合作伙伴是谁?") | Chain.RetrieveDocuments(graphRetriever) // 从图数据库检索 | Chain.LLM(new AzureOpenAI(model: "gpt-4")); await chain.Run(); ``` 简化了图检索与生成的流程集成[^2]。 --- #### 3. **关键优化技术(GRAG)** 针对图结构的增强检索(Graph RAG): 1. **子图检索** 使用图遍历算法(如最短路径、PageRank)提取相关子图: ```cypher MATCH path=(n:Person {name: "Bill Gates"})-[:CO_FOUNDED*..3]-(m) RETURN nodes(path) AS entities, relationships(path) AS relations ``` 2. **拓扑信息注入** 将节点关系编码为文本,增强 LLM 理解: > `比尔·盖茨 --CO_FOUNDED--> 微软 --EMPLOYS--> 萨提亚·纳德拉` 3. **混合检索** 结合向量搜索(如 Azure AI Search)与图查询: ```csharp var vectorResults = await vectorIndex.SearchAsync("微软历史"); var graphResults = await neo4jDriver.RunAsync( "MATCH (n:Company) WHERE n.name CONTAINS '微软' RETURN n" ); ``` --- #### 4. 典型应用场景 1. **知识图谱问答** 企业级知识库,如客户关系分析、产品技术文档查询。 2. **社交网络分析** 用户关系挖掘,社区检测(使用 QuickGraph 库)。 3. **欺诈检测** 实时分析交易图谱中的异常模式(如循环转账)。 --- ### 总结 .NET 生态通过 **Neo4j/Azure Cosmos DB(图存储)** + **Semantic Kernel/LangChain.NET(RAG 编排)** 实现图检索增强生成。核心优势在于: 1. 利用图结构捕获复杂关系,超越传统文本检索[^1]。 2. 通过拓扑编码提升 LLM 的推理准确性。 3. 与 Azure 云服务深度集成,支持企业级部署。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值