深入探索Neo4j和高级RAG:优化嵌入和上下文保留策略

引言

在快速发展的信息检索技术中,如何在数据嵌入的精度与上下文信息的保留之间取得平衡一直是个挑战。本文将介绍Neo4j和高级检索增强生成(RAG)策略,探讨如何通过这些策略来优化信息检索过程,以提高嵌入精度和上下文保留能力。

主要内容

RAG简介与策略

RAG(检索增强生成)是一种通过检索文档与生成文本结合的技术,提高了生成文本的相关性和准确性。下面是几种高级RAG策略:

1. 典型RAG

在传统方法中,索引的精确数据即为检索的数据。这种方法虽简单,但可能忽略了上下文信息。

2. 父检索器

通过将数据分为较小的块(父文档和子文档),子文档的索引提高了特定概念的表示力,而检索父文档则保证了上下文的保留。

3. 假设性问题

处理文档以确定它们可能回答的问题。这些问题被索引以更好地表示特定概念,而检索父文档则确保了上下文的保留。

4. 摘要

对文档进行总结后再进行索引,与此同时,在RAG应用中检索父文档。

环境设置

要开始使用这些策略,首先需要设置以下环境变量:

export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值