这里假设我们的某个场景为:
用户进行答卷,我们需要根据用户的答卷内容给他标记为正向、负向、中性的词汇
每次人工标注就很麻烦,所以这里我们训练模型后,只需要将用户答卷内容丢给我们训练的模型,那么就能直接获取到用户的答卷内容属于哪种标签,之后可以做一些类似语义分析的大屏统计(后面会讲到如何进行语义分析)
我这里最开始用python试了下预训练Transformer模型,发现占用内存是真的高,感觉效率有点不尽人意
你们有兴趣的可以了解下python如何处理,其中model_name = "bert-base-chinese"
这个可以访问官网https://huggingface.co/下载到本地,这样会快一点,不过可能需要翻墙
进入官网后,首页输入框搜bert-base-chinese即可
python我研究的不深,你们自己了解就行,我也就做了个简单模型跑跑
后面选择使用ML.Net进行处理,效率快很多
与 Python 相比,ML.NET 在处理 Transformer 模型时可能会更快的原因可能有以下几点:
1、编程语言和运行时性能:
Python 是一种解释型语言,而 .NET 是一种编译型语言。通常情况下,编译型语言的执行速度比解释型语言更快。此外, .NET 运行时也可以进行即时编译(JIT Compilation),将代码编译成本地机器码,提高了执行效率。
2、并行处理和多线程:ML.NET 在处理 Transformer 模型时可以利用 .NET 平台的多线程和并行处理功能,将计算任务分配到多个处理器核心上并发执