ML.NET处理Transformer 模型,小白也能完成的机器训练之自然语言处理

本文介绍了如何从Python的BERT模型转向ML.NET处理用户答卷内容,以降低内存消耗并提高效率。作者比较了Python和ML.NET在性能上的差异,特别强调了.NET的编译型语言特性、多线程处理和GPU加速在优化Transformer模型中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里假设我们的某个场景为:

用户进行答卷,我们需要根据用户的答卷内容给他标记为正向、负向、中性的词汇

每次人工标注就很麻烦,所以这里我们训练模型后,只需要将用户答卷内容丢给我们训练的模型,那么就能直接获取到用户的答卷内容属于哪种标签,之后可以做一些类似语义分析的大屏统计(后面会讲到如何进行语义分析)

我这里最开始用python试了下预训练Transformer模型,发现占用内存是真的高,感觉效率有点不尽人意

你们有兴趣的可以了解下python如何处理,其中model_name = "bert-base-chinese"

这个可以访问官网https://huggingface.co/下载到本地,这样会快一点,不过可能需要翻墙

进入官网后,首页输入框搜bert-base-chinese即可

python我研究的不深,你们自己了解就行,我也就做了个简单模型跑跑

后面选择使用ML.Net进行处理,效率快很多

与 Python 相比,ML.NET 在处理 Transformer 模型时可能会更快的原因可能有以下几点:

 1、编程语言和运行时性能:

Python 是一种解释型语言,而 .NET 是一种编译型语言。通常情况下,编译型语言的执行速度比解释型语言更快。此外, .NET 运行时也可以进行即时编译(JIT Compilation),将代码编译成本地机器码,提高了执行效率。

2、并行处理和多线程:ML.NET 在处理 Transformer 模型时可以利用 .NET 平台的多线程和并行处理功能,将计算任务分配到多个处理器核心上并发执

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值