NYOJ239 月老的难题 二分图匹配

题目大意:中文题。

算法思路:匈牙利算法的模板题,一开始用邻接矩阵做,结果超时了,后来一看,有10000的边数,难怪超时,因为要判定两点是否有边的话,就得遍历一行,每次递归都这样做的话时间花费是很大的,就改为了邻接表,过了。

#include <iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x3f3f3f3f3f
#define MAXN 505
int t,n,k,a,b,e;
int maps[MAXN*4][MAXN*4],next[20050],match[MAXN],head[MAXN];
bool visited[MAXN*4];
typedef struct Edge
{
    int u;
    int v;
    int c;
};
Edge edges[20050];
void addNode(int u,int v,int c)
{
    edges[e].u=u;
    edges[e].v=v;
    edges[e].c=c;
    next[e]=head[u];
    head[u]=e++;

}
int dfs(int p)
{
    int t;
    for(int i=head[p];i+1;i=next[i])
    {
        if(edges[i].v!=0&&!visited[edges[i].v])
        {
            visited[edges[i].v]=true;
            t=match[edges[i].v];
            match[edges[i].v]=p;
            if(t==-1||dfs(t))
            {
                return 1;
            }
            match[edges[i].v]=t;
        }
    }
    return 0;
}
int main()
{
    int res;
    scanf("%d",&t);
    while(t--)
    {
        memset(visited,false,sizeof(visited));
        res=0;
        scanf("%d%d",&n,&k);
        e=0;
        memset(head,-1,sizeof(head));
        memset(next,-1,sizeof(next));
        for(int i=1;i<=k;i++)
        {
            scanf("%d%d",&a,&b);
            addNode(a,b,1);
        }
        memset(match,-1,sizeof(match));
        for(int i=1;i<=n;i++)
        {
            memset(visited,false,sizeof(visited));
            res+=dfs(i);
        }

        printf("%d\n",res);
    }
   return 0;
}

 

内容概要:本文详细介绍了Maven的下载、安装与配置方法。Maven是基于项目对象模型(POM)的概念,用于项目管理和构建自动化的工具,能有效管理项目依赖、规范项目结构并提供标准化的构建流程。文章首先简述了Maven的功能特点及其重要性,接着列出了系统要求,包括操作系统、磁盘空间等。随后,分别针对Windows、macOS和Linux系统的用户提供了详细的下载和安装指导,涵盖了解压安装包、配置环境变量的具体操作。此外,还讲解了如何配置本地仓库和镜像源(如阿里云),以优化依赖项的下载速度。最后,给出了常见的错误解决方案,如环境变量配置错误、JDK版本不兼容等问题的处理方法。 适合人群:适用于初学者以及有一定经验的Java开发人员,特别是那些希望提升项目构建和依赖管理效率的技术人员。 使用场景及目标: ①帮助开发者掌握Maven的基本概念和功能特性; ②指导用户完成Maven在不同操作系统上的安装与配置; ③教会用户如何配置本地仓库和镜像源以加快依赖项下载; ④解决常见的安装和配置过程中遇到的问题。 阅读建议:由于Maven的安装和配置涉及多个步骤,建议读者按照文中提供的顺序逐步操作,并仔细检查每个环节的细节,尤其是环境变量的配置。同时,在遇到问题时,可参考文末提供的常见问题解决方案,确保顺利完成整个配置过程。
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 旅行商问题(Traveling Salesman Problem, TSP)是一种经典的组合优化问题,目标是找到一条最短路径,让推销员访问一系列城市后返回起点,且每个城市只访问一次。该问题可以转化为图论问题,其中城市是节点,城市间的距离是边的权重。遗传算法是一种适合解决TSP这类NP难问题的全局优化方法,其核心是模拟生物进化过程,包括初始化、选择、交叉和变异等步骤。 初始化:生成初始种群,每个个体(染色体)表示一种旅行路径,通常用随机序列表示,如1到18的整数序列。 适应度计算:适应度函数用于衡量染色体的优劣,即路径总距离。总距离越小,适应度越高。 选择过程:采用轮盘赌选择机制,根据适应度以一定概率选择个体进入下一代,适应度高的个体被选中的概率更大。 交叉操作:一般采用单点交叉,随机选择交叉点,交换两个父代个体的部分基因段生成子代。 变异操作:采用均匀多点变异,随机选择多个点进行变异,变异点的新值在预设范围内随机生成,以维持种群多样性。 反Grefenstette编码:为确保解的可行性,需将变异后的Grefenstette编码转换回原始城市序列,即对交叉和变异结果进行反向处理。 迭代优化:重复上述步骤,直至满足终止条件,如达到预设代数或适应度阈值。 MATLAB是一种强大的数值和科学计算工具,非常适合实现遗传算法。通过编写源程序,可以构建遗传算法框架,处理TSP问题的细节,包括数据结构定义、算法流程控制以及适应度计算、选择、交叉和变异操作的实现。遗传算法虽不能保证找到最优解,但在小规模TSP问题中能提供不错的近似解。对于大规模TSP问题,可结合局部搜索、多算法融合等策略提升解的质量。在实际应用中,遗传算法常与其他优化方法结合,用于解决复杂的调度和路径规划问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值