VideoBooth: Diffusion-based Video Generation with Image Prompts

VideoBooth: Diffusion-based Video Generation with Image Prompts

Videos synthesized by image prompts.

概括

文章提出了一个视频生成模型VideoBooth,输入一张图片和一个文本提示词,即可输出保持图片中物体且符合文本提示词要求的视频。

方法

粗-细两阶段设计:1)粗阶段,利用CLIP图像编码器将图片视觉编码注入文本嵌入中,融合后的嵌入送入cross attention层;2)细阶段,将多尺度图片空间信息注入视频生成模型的cross-frame attentions层。
Overview
一些困惑:

  • 多尺度的图片编码是用什么图像编码器获取的?通过VAE获取潜在表征,而这个多尺度,其实就是潜在编码在U-Net在不同阶段的输出。

预备知识

  • 拓展2D卷积:为了处理视频数据和时序关联,我们将SD模型中的2D卷积扩展为了3D卷积。(应该指的是U-Net中的卷积层)
  • 交叉帧注意力模块:SD模型中原本的自注意力模块被修改成了交叉帧注意力模块,以提高时序一致性。交叉帧模块同时处理空间和时序域,因此可以提高合成帧的时序一致性。
  • 时序注意力模块:处理时序域,对所有帧起作用,提高时序一致性。

粗粒度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值