解决Spark窗口统计函数rank()、row_number()、percent_rank()的OOM问题

本文介绍了Spark窗口函数如rank(), row_number(), percent_rank()在处理大数据时可能导致的OOM问题,并提供了三种解决方法:通过SQL处理,转换为rdd进行排序,以及数据量过多时的分组随机打散策略,以实现近似排序。" 135749080,10856630,Qt5.9在Linux上的完整安装教程,"['Qt', 'Linux', '开发环境', '软件安装', 'C++']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.    窗口函数功能介绍

一个简单的例子

一个复杂的例子

2.数据量过大时的OOM问题

问题及原因

解决方法1:用SQL处理

解决方法2:转为rdd进行处理

解决方法3:将数据量过多的分组进行随机打散,从而近似排序


1.    窗口函数功能介绍

在利用Spark SQL按分组统计每个组内topN,或者相对某个指标归一化到[0,1]区间上时,可以使用spark的窗口函数:
(1)    rank:  分数相同的行,排序编号也一致。当有2行数据排序并列第一时,它们的编号都是1,排第三的编号是3
(2)    dense_rank:分数相同的行,排序编号也一致。当有2行数据排序并列第一时,它们的编号都是1,排第三的编号是2
(3)    row_number: 每一行的编号唯一,当有2行数据相同时,随机分配编号
(4)    percent_rank:结果可以视作为rank()的结果,除以最大的编号


一个简单的例子

package high_quality._history

import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window

object test {

  def main(args: Array[String]) {

    val spark = SparkSession.builder().master("local[2]").appName("test").config("spark.hadoop.validateOutputSpecs", "false").getOrCreate()
    import spark.implicits._

    Seq("22", "27", "37", "47", "57")
      .toDF("x1")
      .withColumn("x2", percent_rank().over(Window.orderBy($"x1"))).show()
  }
}

结果为:

一个复杂的例子

假设有数据如下表(例子转自https://blog.csdn.net/kwame211/article/details/81325261):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值