TensorBoard菜鸟教程(包含TFlearn例子)

这篇博客针对TensorBoard的使用提供了详细的新手教程,包括如何启动TensorBoard,通过实例解析计算图的结构,以及如何在TFlearn中生成events文件。通过示例代码,解释了如何利用TensorBoard进行模型可视化和数据跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 简介

2. TnesorBoard启动

3.代码解释

4.补充例子


1. 简介

网上关于TensorBoard有很多介绍,但作为一名小白很难操作起来,实现过程中困难重重。本文章从实例解析tensorboard的使用方法。其他文字方面的介绍(如TensorBoard是什么、TensorBoard的作用)可参考大神们的博客。以下代码转自http://www.jianshu.com/p/61081bba175f 。已运行通过(python3)

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/MNIST_data", one_hot=True)

# Input placeholder, 2-D tensor of floating-point nunbers.
# here None means that a dimension can be of any length.
X = tf.placeholder(tf.float32, [None, 784], name = 'X-input')

# New placeholder to input the correct answers.
Y = tf.placeholder(tf.float32, [None, 10], name = 'Y-input')

# Initialize both W and b as tensors full of zeros.
# Since we are going to learn W and b, it doesn't matter very much what they initial are.
W = tf.Variable(tf.zeros([784, 10]), name = 'Weight')
B = tf.Variable(tf.zeros([10]), name = 'Bias')

# Tensorboard histogram summary.
tf.summary.histogram('WeightSM', W)
tf.summary.histogram('BiasSM', B)

with tf.name_scope('Layer'):
    y = tf.nn.softmax(tf.matmul(X, W) + B)

with tf.name_scope('Cost'):
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(y), reduction_indices=[1]))
    # Tensorboard scalar summary.
    tf.summary.scalar('Cost', cross_entropy)

with tf.name_scope('Train'):
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

with tf.name_scope('Accuracy'):
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(Y, 1)), tf.float32))
    # Tensorboard scalar summary.
    tf.summary.scalar('Accuracy', accuracy)

with tf.Session() as sess:
    # Merge all summaries.
    writer=tf.summary.FileWriter('./logs',sess.graph)
    merged = tf.summary.me
### TensorBoard 的安装指南及教程 #### 1. 使用 `pip` 安装 TensorBoard 通过 `pip` 工具安装 TensorBoard 是最常用的方法。运行以下命令即可完成安装: ```bash pip install tensorboard ``` 如果系统中存在多个 Python 版本,建议使用 `pip3` 来确保安装到正确的 Python 环境中[^1]。 #### 2. 使用国内镜像源加速安装 为了加速安装过程,可以使用国内的镜像源,例如中国科学技术大学的镜像源。以下是使用该镜像源的安装命令: ```bash pip install tensorboard -i https://pypi.mirrors.ustc.edu.cn/simple/ ``` #### 3. 在 Anaconda 环境中安装 TensorBoard 在 Anaconda 环境中,推荐使用 `conda` 命令来安装 TensorBoard。例如: ```bash conda install tensorboard ``` 如果需要将 TensorBoard 安装到特定路径,可以使用 `--target` 参数指定目标路径[^2]。 #### 4. 验证安装是否成功 安装完成后,可以通过以下代码验证 TensorBoard 是否正确安装: ```python import tensorboard print(tensorboard.__version__) ``` #### 5. 启动 TensorBoard 并查看日志 TensorBoard 通常与 TensorFlow 一起使用,生成的日志文件可以通过以下命令查看: ```bash tensorboard --logdir=PATH_TO_LOGS ``` 如果遇到启动问题,可以尝试使用绝对路径执行 TensorBoard 的主文件[^3]。例如: ```bash python3 /usr/local/lib/python3/dist-packages/tensorboard/main.py --logdir=./ ``` #### 6. 注意事项 - 在 Windows 系统中,路径中的反斜杠 `\` 可能会导致问题。建议将路径中的 `\` 替换为 `/` 或使用双反斜杠 `\\`。 - 如果安装过程中出现权限问题,可以在命令前添加 `sudo`(仅限 Linux 和 macOS)[^1]。 #### 7. 示例:生成 TensorBoard 日志 以下是一个简单的 TensorFlow 脚本,用于生成 TensorBoard 所需的日志文件: ```python import tensorflow as tf a = tf.constant(5, name="input_a") b = tf.constant(3, name="input_b") c = tf.multiply(a, b, name="mul_c") d = tf.add(a, b, name="add_d") e = tf.add(c, d, name="add_e") sess = tf.compat.v1.Session() output = sess.run(e) writer = tf.compat.v1.summary.FileWriter('./my_graph', sess.graph) writer.close() sess.close() ``` 运行上述代码后,可以在 `./my_graph` 目录下找到日志文件,并通过以下命令启动 TensorBoard 查看结果: ```bash tensorboard --logdir=./my_graph ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值