guava和caffeine性能测试

本文探讨了Spring5为何选择Caffeine替换GuavaCache,通过三种不同场景的性能测试,揭示了Caffeine在缓存淘汰策略、内存优化及API设计上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

guava和caffeine性能测试

spring5已经放弃guava,拥抱caffeine。

那么为什么这么好的东西需要被淘汰呢,如果对于本地Cache有过深入研究的人应该知道LRU算法基本可以满足大部分的场景,但是很多人为了精益求精,基于LRU的算法,又在此基础上提出了一系列更好的,更有效果的淘汰策略。比如有ARC,LIRS和W-TinyLFU等都提供了接近最理想的命中率,他们这些算法进一步提高了本地缓存的效率。

Cache的目的就是缓存,如果在功能一样的情况下,最重要的突破就是性能了。从功能上来看GuavaCache已经比较完善了,基本满足了绝大部分本地缓存的需求。那么Spring5使用Caffeine来代替GuavaCache就是因为性能的问题了。首先我们来看看官方给出来的性能测试对比的报告。

场景一

8个线程读,100%的读操作
image

场景二

6个线程读,2个线程写,也就是75%的读操作,25%的写操作
image

场景三

8个线程写,100%的写操作
image

总结

可以从数据看出来Caffeine的性能都比Guava要好。
然后Caffeine的API的操作功能和Guava是基本保持一致的,并且Caffeine为了兼容之前是Guava的用户,做了一个Guava的Adapter给大家使用也是十分的贴心。
当然Caffeine的调整不只有算法上面的调整,还有内存方面的优化以及一些实用的方法没有覆盖到。不过相信仅仅是上面提到的新特点就会让人们有心动的想法去尝试。

### 功能对比 Caffeine Guava Cache 均提供了丰富的功能来满足开发者的需求。然而,Caffeine 继承了 Guava Cache 的设计哲学,并在此基础上进行了改进扩展[^3]。 #### 主要功能差异: - **缓存策略**:两者都支持常见的缓存淘汰策略,如 LRU(最近最少使用) LFU(最不经常使用)。不过,Caffeina 提供了更灵活的 Weighted Random Sampling (WRS) 策略,能够更好地适应复杂的高并发环境[^4]。 - **线程安全性**:两者的实现均具备良好的线程安全特性,但在高并发场景下,Caffeine 表现得更为出色[^1]。 - **API 兼容性**:由于 Caffeine 设计时考虑到了向后兼容性,因此它可以直接替代 Guava Cache 而无需大幅修改现有代码。 --- ### 性能测试 关于性能方面,在多个独立研究中表明,Caffeine 明显优于 Guava Cache,尤其是在处理大规模数据集以及面对极高频率请求的情况下[^2]。 以下是基于官方文档其他资源总结的一个简单性能测试案例: ```java // 测试代码示例 import com.github.benmanes.caffeine.cache.Caffeine; import com.google.common.cache.CacheBuilder; public class CachePerformanceTest { public static void main(String[] args) throws InterruptedException { int iterations = 1_000_000; // 进行一百万次操作 testCache("Guava", CacheBuilder.newBuilder().maximumSize(100).build()); testCache("Caffeine", Caffeine.newBuilder().maximumSize(100).build()); } private static void testCache(String name, Object cacheInstance) throws InterruptedException { long start = System.nanoTime(); if (cacheInstance instanceof com.google.common.cache.LoadingCache<?, ?> guavaCache){ for(int i=0;i<iterations;i++) {guavaCache.getUnchecked(i);} }else{ var caffeineCache=(com.github.benmanes.caffeine.cache.Cache<Integer,Integer>)cacheInstance; for(int i=0;i<iterations;i++) {caffeineCache.put(i,i); caffeineCache.getIfPresent(i);} } long duration = (System.nanoTime() - start)/1_000_000L; System.out.println(name+" took "+duration+" ms"); } } ``` 上述程序展示了如何分别利用 Guava Cache Caffeine 执行相同数量的操作,并记录所需时间。通常情况下,运行结果显示 Caffeine 完成同样任务所花费的时间显著少于 Guava Cache--- ### 使用建议 对于具体应用场景的选择可以根据以下几个因素决定: - 如果项目已经广泛采用了 Google Guava 库,则继续沿用 Guava Cache 可能会更加方便快捷; - 对于新开发或者需要更高效率尤其是涉及大量读写访问的应用来说,推荐选用 Caffeine 来获得更好的整体表现; - 单机部署且数据规模适中的情形下,无论是选择哪种方案都能很好地胜任工作需求。 此外需要注意的是,尽管二者均为优秀的本地缓存解决方案,但如果遇到跨服务共享状态等问题时,则可能还需要引入像 Redis 这样的分布式存储机制作为补充。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值