C++:AVL树

本节概括:
1.AVL树的概念 

2.AVL树的定义

3.AVL树的插入(重点)

4.AVL树的旋转(重点)

5.AVL树的验证

6.AVL树的删除(了解)

7.AVL树的性能

1.AVL树的概念

二叉搜索树虽可以缩短查找的效率,但 如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下 。因此,两位俄罗斯的数学家 G.M.Adelson-Velskii
E.M.Landis 1962
发明了一种解决上述问题的方法: 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右
子树高度之差的绝对值不超过 1( 需要对树中的结点进行调整 ) ,即可降低树的高度,从而减少平均
搜索长度。
一棵 AVL 树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是 AVL
左右子树高度之差 ( 简称平衡因子 ) 的绝对值不超过 1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个结点,其高度可保持在
O(log_2 n),搜索时间复杂度O(log_2 n).

2 AVL树节点的定义

AVL树节点的定义:

template<class T>
struct AVLTreeNode
{
 AVLTreeNode(const T& data)
     : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
 , _data(data), _bf(0)
 {}
 AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
 AVLTreeNode<T>* _pRight;  // 该节点的右孩子
 AVLTreeNode<T>* _pParent; // 该节点的双亲
 T _data;
 int _bf;                  // 该节点的平衡因子
};

 3 AVL树的插入

AVL 树就是在二叉搜索树的基础上引入了平衡因子,因此 AVL 树也可以看成是二叉搜索树。那么
AVL 树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子

bool Insert(const T& data)
{
    // 1. 先按照二叉搜索树的规则将节点插入到AVL树中
    // ...
    
    // 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
破坏了AVL树
    //   的平衡性
    
 /*
 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
  
 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
     AVL树的性质,插入成功
  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
     时以pParent为根的树的高度增加,需要继续向上更新
  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
 */
 while (pParent)
 {
        // 更新双亲的平衡因子
 if (pCur == pParent->_pLeft)
 pParent->_bf--;
 else
 pParent->_bf++;
 // 更新后检测双亲的平衡因子
 if (0 == pParent->_bf)
       {    
            break;
       }
 else if (1 == pParent->_bf || -1 == pParent->_bf)
 {
              // 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
//为根的二叉树
              // 的高度增加了一层,因此需要继续向上调整
 pCur = pParent;
 pParent = pCur->_pParent;
 }
 else
 {
 // 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
 // 为根的树进行旋转处理
if(2 == pParent->_bf)
             {
                  // ...
             }
              else
             {
                  // ...
             }
 }
 }
 return true;
}

图文详细讲解:

4 AVL树的旋转

如果在一棵原本是平衡的 AVL 树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同, AVL 树的旋转分为四种:

1. 新节点插入较高左子树的左侧---左左:右单旋

/*
  上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加
  了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子
树增加一层,
  即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点
的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
     如果是根节点,旋转完成后,要更新根节点
     如果是子树,可能是某个节点的左子树,也可能是右子树
    
同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/
void _RotateR(PNode pParent)
{
	// pSubL: pParent的左孩子
	// pSubLR: pParent左孩子的右孩子,注意:该
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;
	// 旋转完成之后,30的右孩子作为双亲的左孩子
	pParent->_pLeft = pSubLR;
	// 如果30的左孩子的右孩子存在,更新亲双亲
	if (pSubLR)
		pSubLR->_pParent = pParent;
	// 60 作为 30的右孩子
	pSubL->_pRight = pParent;

	// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
	PNode pPParent = pParent->_pParent;

	// 更新60的双亲
	pParent->_pParent = pSubL;

	// 更新30的双亲
	pSubL->_pParent = pPParent;
	// 如果60是根节点,根新指向根节点的指针
	if (NULL == pPParent)
	{
		_pRoot = pSubL;
		pSubL->_pParent = NULL;
	}
	else
	{
		// 如果60是子树,可能是其双亲的左子树,也可能是右子树
		if (pPParent->_pLeft == pParent)
			pPParent->_pLeft = pSubL;
		else
			pPParent->_pRight = pSubL;
	}
	// 根据调整后的结构更新部分节点的平衡因子
	pParent->_bf = pSubL->_bf = 0;
}

2. 新节点插入较高右子树的右侧---右右:左单旋

实现及情况考虑可参考右单旋。

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即: 先对 30 进行左单旋,然后再对 90 进行右单旋 ,旋转完成后再
考虑平衡因子的更新。

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
		int bf = pSubLR->_bf;

	// 先对30进行左单旋
	_RotateL(pParent->_pLeft);

	// 再对90进行右单旋
	_RotateR(pParent);
	if (1 == bf)
		pSubL->_bf = -1;
	else if (-1 == bf)
		pParent->_bf = 1;
}

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

参考右左双旋。
总结:
假如以 pParent 为根的子树不平衡,即 pParent 的平衡因子为 2 或者 -2 ,分以下情况考虑
1. pParent 的平衡因子为 2 ,说明 pParent 的右子树高,设 pParent 的右子树的根为 pSubR
pSubR 的平衡因子为 1 时,执行左单旋 ,当pSubR 的平衡因子为 -1 时,执行右左双旋
2. pParent 的平衡因子为 -2 ,说明 pParent 的左子树高,设 pParent 的左子树的根为 pSubL
pSubL 的平衡因子为 -1 是,执行右单旋 ,当pSubL 的平衡因子为 1 时,执行左右双旋
旋转完成后,原 pParent 为根的子树个高度降低,已经平衡,不需要再向上更新。

图文讲解:

5 AVL树的验证

AVL 树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证 AVL 树,可以分两步:
1. 验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2. 验证其为平衡树
每个节点子树高度差的绝对值不超过 1( 注意节点中如果没有平衡因子 )
节点的平衡因子是否计算正确

int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
 // 空树也是AVL树
 if (nullptr == pRoot) return true;
    
 // 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
 int leftHeight = _Height(pRoot->_pLeft);
 int rightHeight = _Height(pRoot->_pRight);
 int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
 // pRoot平衡因子的绝对值超过1,则一定不是AVL树
 if (diff != pRoot->_bf || (diff > 1 || diff < -1))
 return false;
 // pRoot的左和右如果都是AVL树,则该树一定是AVL树
 return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);
 }
3. 验证用例
请同学们结合上述代码按照以下的数据次序,自己动手画 AVL 树的创建过程,验证代码
是否有漏洞。
常规场景 1
{16, 3, 7, 11, 9, 26, 18, 14, 15}
特殊场景 2
{4, 2, 6, 1, 3, 5, 15, 7, 16, 14}

6 AVL树的删除(了解)

因为 AVL 树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不
错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
具体实现学生们可参考《算法导论》或《数据结构 - 用面向对象方法与 C++ 描述》殷人昆版。

7 AVL树的性能

AVL 树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过 1 ,这
样可以保证查询时高效的时间复杂度,即 $log_2 (N)$ 。但是如果要对 AVL 树做一些结构修改的操
作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,
有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数
据的个数为静态的 ( 即不会改变 ) ,可以考虑 AVL 树,但一个结构经常修改,就不太适合

源代码部分:
 

#pragma once
#include <assert.h>
template<class T>
struct AVLTreeNode
{
	AVLTreeNode<T>* _parent;
	AVLTreeNode<T>* _left;
	AVLTreeNode<T>* _right;
	T data;
	int _bf;

	AVLTreeNode(const T& x=T())
		:data(x)
		, _parent(nullptr)
		, _left(nullptr)
		, _right(nullptr)
		, _bf(0)
	{
	}
};

template<class T>
class AVLTree
{
	typedef AVLTreeNode<T> Node;
public:
	AVLTree()
		:_root(nullptr)
	{
	}

	bool Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			return true;
		}

		else
		{
			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->data < data)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if(cur->data>data)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(data);

			if (parent->data < data)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}

			cur->_parent = parent;

			while (parent)
			{
				if (cur==parent->_left)
				{
					parent->_bf--;
				}

				else  
				{
					parent->_bf++;
				}

				if (parent->_bf == 0)
				{
					break;
				}

				else if (parent->_bf == -1 || parent->_bf == 1)
				{
					//向上调整
					cur = parent;
					parent = parent->_parent;
				}

				else if (parent->_bf == -2 || parent->_bf == 2)
				{
					//左旋
					if (parent->_bf==2 && cur->_bf==1)
					{
						RotateL(parent);
					}
					//右旋
					else if (parent->_bf == -2 && cur->_bf == -1)
					{
						RotateR(parent);
					}
					//左右旋
					else if (parent->_bf == -2 && cur->_bf == 1)
					{
						RotateLR(parent);
					}
					//右左旋
					else if (parent->_bf == 2 && cur->_bf == -1)
					{
						RotateRL(parent);
					}
					break;
				}

				else
				{
					assert(false);
				}
			}


		}

		return true;
	}

	bool IsAVLTree()
	{
		return _IsAVLTree(_root);
	}

	size_t Height()
	{
		return _Height(_root);
	}
private:
	// 根据AVL树的概念验证pRoot是否为有效的AVL树
	bool _IsAVLTree(Node* root)
	{
		if (root == nullptr)
			return true;

		int lefheight = _Height(root->_left);
		int rightheight = _Height(root->_right);

		if (rightheight-lefheight!=root->_bf)
		{
			cout << "平衡因子异常" << root->data<<"->" << root->_bf << endl;
			return false;
		}
		return abs( rightheight- lefheight) < 2
			&& _IsAVLTree(root->_left)
			&& _IsAVLTree(root->_right);
	}

	size_t _Height(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}

		int leftheight = _Height(root->_left);
		int rightheight= _Height(root->_right);

		return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
	}


	// 右单旋
	void RotateR(Node* parent)
	{
		Node* cur = parent->_left;
		Node* curright = parent->_right;

		parent->_left = curright;


		if (curright)
		{
			curright->_parent = parent;
		}
		cur->_right = parent;
		Node* ppnode = parent->_parent;
		parent->_parent = cur;

		if (ppnode == nullptr)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;
			}
			cur->_parent = ppnode;
		}
		cur->_bf = parent->_bf = 0;
	}
	// 左单旋
	void RotateL(Node* parent)
	{
		Node* cur = parent->_right;
		Node* curleft = cur->_left;

		parent->_right = curleft;


		if (curleft)
		{
			curleft->_parent = parent;
		}
		cur->_left = parent;
		Node* ppnode = parent->_parent;
		parent->_parent = cur;

		if (parent==_root)
		{
			_root = cur;
			cur->_parent = nullptr;
		}

		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;
			}

			cur->_parent = ppnode;

		}
		
		cur->_bf = parent->_bf = 0;


	}
	// 右左双旋
	void RotateRL(Node* parent)
	{
		Node* cur = parent->_right;
		Node* curleft = cur->_left;
		int bf = curleft->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 0)
		{
			cur->_bf = 0;
			parent->_bf = 0;
			curleft->_bf = 0;
		}
		else if (bf == 1)
		{
			cur->_bf = 0;
			parent->_bf = -1;
			curleft->_bf = 0;
		}
		else if (bf == -1)
		{
			cur->_bf = 1;
			parent->_bf = 0;
			curleft->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	// 左右双旋
	void RotateLR(Node* parent)
	{
		Node* cur = parent->_left;
		Node* curright = cur->_right;
		int bf = curright->_bf;

		RotateL(parent->_left);
		RotateR(parent);


		if (bf == 0)
		{
			cur->_bf = 0;
			parent->_bf = 0;
			curright->_bf = 0;
		}
		else if (bf == -1)
		{
			cur->_bf = 0;
			parent->_bf = 1;
			curright->_bf = 0;
		}
		else if (bf == 1)
		{
			cur->_bf = -1;
			parent->_bf = 0;
			curright->_bf = 0;
		}
	
		else
		{
			assert(false);
		}

	}



private:
	Node* _root;
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值