本节概括:
1.AVL树的概念
2.AVL树的定义
3.AVL树的插入(重点)
4.AVL树的旋转(重点)
5.AVL树的验证
6.AVL树的删除(了解)
7.AVL树的性能
1.AVL树的概念
二叉搜索树虽可以缩短查找的效率,但
如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下
。因此,两位俄罗斯的数学家
G.M.Adelson-Velskii
和
E.M.Landis
在
1962
年
发明了一种解决上述问题的方法:
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右
子树高度之差的绝对值不超过
1(
需要对树中的结点进行调整
)
,即可降低树的高度,从而减少平均
搜索长度。
一棵
AVL
树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是
AVL
树
左右子树高度之差
(
简称平衡因子
)
的绝对值不超过
1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是
AVL
树。如果它有
n
个结点,其高度可保持在
O(log_2 n),搜索时间复杂度O(log_2 n).
2 AVL树节点的定义
AVL树节点的定义:
template<class T>
struct AVLTreeNode
{
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
};
3 AVL树的插入
AVL
树就是在二叉搜索树的基础上引入了平衡因子,因此
AVL
树也可以看成是二叉搜索树。那么
AVL
树的插入过程可以分为两步:
1.
按照二叉搜索树的方式插入新节点
2.
调整节点的平衡因子
bool Insert(const T& data)
{
// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
// ...
// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
破坏了AVL树
// 的平衡性
/*
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
AVL树的性质,插入成功
2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
时以pParent为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
*/
while (pParent)
{
// 更新双亲的平衡因子
if (pCur == pParent->_pLeft)
pParent->_bf--;
else
pParent->_bf++;
// 更新后检测双亲的平衡因子
if (0 == pParent->_bf)
{
break;
}
else if (1 == pParent->_bf || -1 == pParent->_bf)
{
// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
//为根的二叉树
// 的高度增加了一层,因此需要继续向上调整
pCur = pParent;
pParent = pCur->_pParent;
}
else
{
// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
// 为根的树进行旋转处理
if(2 == pParent->_bf)
{
// ...
}
else
{
// ...
}
}
}
return true;
}
图文详细讲解:
4 AVL树的旋转
如果在一棵原本是平衡的
AVL
树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,
AVL
树的旋转分为四种:
1. 新节点插入较高左子树的左侧---左左:右单旋
/*
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加
了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子
树增加一层,
即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点
的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在
2. 60可能是根节点,也可能是子树
如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/
void _RotateR(PNode pParent)
{
// pSubL: pParent的左孩子
// pSubLR: pParent左孩子的右孩子,注意:该
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转完成之后,30的右孩子作为双亲的左孩子
pParent->_pLeft = pSubLR;
// 如果30的左孩子的右孩子存在,更新亲双亲
if (pSubLR)
pSubLR->_pParent = pParent;
// 60 作为 30的右孩子
pSubL->_pRight = pParent;
// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
PNode pPParent = pParent->_pParent;
// 更新60的双亲
pParent->_pParent = pSubL;
// 更新30的双亲
pSubL->_pParent = pPParent;
// 如果60是根节点,根新指向根节点的指针
if (NULL == pPParent)
{
_pRoot = pSubL;
pSubL->_pParent = NULL;
}
else
{
// 如果60是子树,可能是其双亲的左子树,也可能是右子树
if (pPParent->_pLeft == pParent)
pPParent->_pLeft = pSubL;
else
pPParent->_pRight = pSubL;
}
// 根据调整后的结构更新部分节点的平衡因子
pParent->_bf = pSubL->_bf = 0;
}
2. 新节点插入较高右子树的右侧---右右:左单旋
实现及情况考虑可参考右单旋。
3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
将双旋变成单旋后再旋转,即:
先对
30
进行左单旋,然后再对
90
进行右单旋
,旋转完成后再
考虑平衡因子的更新。
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
int bf = pSubLR->_bf;
// 先对30进行左单旋
_RotateL(pParent->_pLeft);
// 再对90进行右单旋
_RotateR(pParent);
if (1 == bf)
pSubL->_bf = -1;
else if (-1 == bf)
pParent->_bf = 1;
}
4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
参考右左双旋。
总结:
假如以
pParent
为根的子树不平衡,即
pParent
的平衡因子为
2
或者
-2
,分以下情况考虑
1. pParent
的平衡因子为
2
,说明
pParent
的右子树高,设
pParent
的右子树的根为
pSubR
当
pSubR
的平衡因子为
1
时,执行左单旋 ,当pSubR
的平衡因子为
-1
时,执行右左双旋
2. pParent
的平衡因子为
-2
,说明
pParent
的左子树高,设
pParent
的左子树的根为
pSubL
当
pSubL
的平衡因子为
-1
是,执行右单旋 ,当pSubL
的平衡因子为
1
时,执行左右双旋
旋转完成后,原
pParent
为根的子树个高度降低,已经平衡,不需要再向上更新。
图文讲解:
5 AVL树的验证
AVL
树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证
AVL
树,可以分两步:
1.
验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2.
验证其为平衡树
每个节点子树高度差的绝对值不超过
1(
注意节点中如果没有平衡因子
)
节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
// 空树也是AVL树
if (nullptr == pRoot) return true;
// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
int leftHeight = _Height(pRoot->_pLeft);
int rightHeight = _Height(pRoot->_pRight);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
// pRoot平衡因子的绝对值超过1,则一定不是AVL树
if (diff != pRoot->_bf || (diff > 1 || diff < -1))
return false;
// pRoot的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);
}
3.
验证用例
请同学们结合上述代码按照以下的数据次序,自己动手画
AVL
树的创建过程,验证代码
是否有漏洞。
常规场景
1
{16, 3, 7, 11, 9, 26, 18, 14, 15}
特殊场景
2
{4, 2, 6, 1, 3, 5, 15, 7, 16, 14}
6 AVL树的删除(了解)
因为
AVL
树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不
错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
具体实现学生们可参考《算法导论》或《数据结构
-
用面向对象方法与
C++
描述》殷人昆版。
7 AVL树的性能
AVL
树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过
1
,这
样可以保证查询时高效的时间复杂度,即
$log_2 (N)$
。但是如果要对
AVL
树做一些结构修改的操
作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,
有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数
据的个数为静态的
(
即不会改变
)
,可以考虑
AVL
树,但一个结构经常修改,就不太适合
源代码部分:
#pragma once
#include <assert.h>
template<class T>
struct AVLTreeNode
{
AVLTreeNode<T>* _parent;
AVLTreeNode<T>* _left;
AVLTreeNode<T>* _right;
T data;
int _bf;
AVLTreeNode(const T& x=T())
:data(x)
, _parent(nullptr)
, _left(nullptr)
, _right(nullptr)
, _bf(0)
{
}
};
template<class T>
class AVLTree
{
typedef AVLTreeNode<T> Node;
public:
AVLTree()
:_root(nullptr)
{
}
bool Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
return true;
}
else
{
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->data < data)
{
parent = cur;
cur = cur->_right;
}
else if(cur->data>data)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(data);
if (parent->data < data)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent)
{
if (cur==parent->_left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == -1 || parent->_bf == 1)
{
//向上调整
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == -2 || parent->_bf == 2)
{
//左旋
if (parent->_bf==2 && cur->_bf==1)
{
RotateL(parent);
}
//右旋
else if (parent->_bf == -2 && cur->_bf == -1)
{
RotateR(parent);
}
//左右旋
else if (parent->_bf == -2 && cur->_bf == 1)
{
RotateLR(parent);
}
//右左旋
else if (parent->_bf == 2 && cur->_bf == -1)
{
RotateRL(parent);
}
break;
}
else
{
assert(false);
}
}
}
return true;
}
bool IsAVLTree()
{
return _IsAVLTree(_root);
}
size_t Height()
{
return _Height(_root);
}
private:
// 根据AVL树的概念验证pRoot是否为有效的AVL树
bool _IsAVLTree(Node* root)
{
if (root == nullptr)
return true;
int lefheight = _Height(root->_left);
int rightheight = _Height(root->_right);
if (rightheight-lefheight!=root->_bf)
{
cout << "平衡因子异常" << root->data<<"->" << root->_bf << endl;
return false;
}
return abs( rightheight- lefheight) < 2
&& _IsAVLTree(root->_left)
&& _IsAVLTree(root->_right);
}
size_t _Height(Node* root)
{
if (root == nullptr)
{
return 0;
}
int leftheight = _Height(root->_left);
int rightheight= _Height(root->_right);
return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
}
// 右单旋
void RotateR(Node* parent)
{
Node* cur = parent->_left;
Node* curright = parent->_right;
parent->_left = curright;
if (curright)
{
curright->_parent = parent;
}
cur->_right = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (ppnode == nullptr)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
cur->_bf = parent->_bf = 0;
}
// 左单旋
void RotateL(Node* parent)
{
Node* cur = parent->_right;
Node* curleft = cur->_left;
parent->_right = curleft;
if (curleft)
{
curleft->_parent = parent;
}
cur->_left = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (parent==_root)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
cur->_bf = parent->_bf = 0;
}
// 右左双旋
void RotateRL(Node* parent)
{
Node* cur = parent->_right;
Node* curleft = cur->_left;
int bf = curleft->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == 0)
{
cur->_bf = 0;
parent->_bf = 0;
curleft->_bf = 0;
}
else if (bf == 1)
{
cur->_bf = 0;
parent->_bf = -1;
curleft->_bf = 0;
}
else if (bf == -1)
{
cur->_bf = 1;
parent->_bf = 0;
curleft->_bf = 0;
}
else
{
assert(false);
}
}
// 左右双旋
void RotateLR(Node* parent)
{
Node* cur = parent->_left;
Node* curright = cur->_right;
int bf = curright->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == 0)
{
cur->_bf = 0;
parent->_bf = 0;
curright->_bf = 0;
}
else if (bf == -1)
{
cur->_bf = 0;
parent->_bf = 1;
curright->_bf = 0;
}
else if (bf == 1)
{
cur->_bf = -1;
parent->_bf = 0;
curright->_bf = 0;
}
else
{
assert(false);
}
}
private:
Node* _root;
};