行人属性识别 PETA数据集

数据集主页(内含数据集下载地址):

http://mmlab.ie.cuhk.edu.hk/projects/PETA.html

百度网盘连接:

链接: https://pan.baidu.com/s/1Yt47VmpozNSYI3DDxzZtVA 密码: qkbj

描述:

    PETA (PEdesTrian Attribute)数据集包含了8705个行人,共19000张图像(分辨率跨度范围大,从17x39到169x365的大小都有)。每个行人标注了61个二值的和4个多类别的属性。实际上,PETA数据集是由多个较小的行人重识别数据集经过属性标注后汇集而成的。如下表所示:

    数据集中的每个子数据集为一个独立文件夹,属性标签以txt文件给出,示例如下:

806 upperBodyBlack lowerBodyGrey hairBlack footwearWhite lowerBodyCasual lowerBodyTrousers personalLess30 personalMale upperBodyCasual upperBodyLogo upperBodyShortSleeve upperBodyTshirt hairShort footwearSneakers carryingNothing accessoryNothing

第一项为图像索引,后面各项为属性标签。注意该属性条目不是固定长度的,某个类别的属性可以有多个标签,比方说,上身衣服颜色可以同时有upperBodyBlack和upperBodyBrown两个标签。

 

具体包括的属性类别:

61个二值属性(原来有65个,但因为其中4个属性的样本数量太少而被移除。因此不用在意前面的序号)
                    2      accessoryHeadphone    
                    4      personalLess15        
                    5      personalLess30                 Age16-30
                    6      personalLess45                 Age31-45
                    7      personalLess60                 Age46-60
                    8      personalLarger60              AgeAbove60
                    9      carryingBabyBuggy    
                    10    carryingBackpack             Backpack
                    11    hairBald        
                    12    footwearBoots        
                    13    lowerBodyCapri        
                    14    carryingOther                   CarryingOther
                    15    carryingShoppingTro    
                    16    carryingUmbrella    
                    17    lowerBodyCasual              Casual lower
                    18    upperBodyCasual             Casual upper
                    19    personalFemale        
                    20    carryingFolder        
                    21    lowerBodyFormal              Formal lower
                    22    upperBodyFormal             Formal upper
                    23    accessoryHairBand    
                    24    accessoryHat                    Hat
                    25    lowerBodyHotPants    
                    26    upperBodyJacket              Jacket
                    27    lowerBodyJeans                Jeans
                    28    accessoryKerchief    
                    29    footwearLeatherShoes      Leather Shoes
                    30    upperBodyLogo                Logo
                    31    hairLong                           Long hair
                    32    lowerBodyLongSkirt    
                    33    upperBodyLongSleeve    
                    35    lowerBodyPlaid        
                    37    lowerBodyThinStripes    
                    38    carryingLuggageCase    
                    39    personalMale                     Male
                    40    carryingMessengerBag       MessengerBag
                    41    accessoryMuffler                Muffler
                    42    accessoryNothing               No accessory
                    43    carryingNothing                 No carrying
                    44    upperBodyNoSleeve    
                    45    upperBodyPlaid                  Plaid
                    46    carryingPlasticBags             Plastic bag
                    47    footwearSandals                 Sandals
                    48    footwearShoes                    Shoes
                    49    hairShort        
                    50    lowerBodyShorts                 Shorts  
                    51    upperBodyShortSleeve        ShortSleeve
                    52    lowerBodyShortSkirt           Skirt
                    53    footwearSneaker                 Sneaker
                    54    footwearStocking    
                    55    upperBodyThinStripes         Stripes
                    56    upperBodySuit        
                    57    carryingSuitcase    
                    58    lowerBodySuits        
                    59    accessorySunglasses            Sunglasses
                    60    upperBodySweater    
                    61    upperBodyThickStripes    
                    62    lowerBodyTrousers             Trousers
                    63    upperBodyTshirt                 Tshirt
                    64    upperBodyOther                 UpperOther
                    65    upperBodyVNeck                V-Neck
 
4个多类别属性
footwear:       Black, Blue, Brown, Green, Grey, Orange, Pink, Purple, Red, White, Yellow
hair:               Black, Blue, Brown, Green, Grey, Orange, Pink, Purple, Red, White, Yellow
lowerbody:     Black, Blue, Brown, Green, Grey, Orange, Pink, Purple, Red, White, Yellow
upperbody:    Black, Blue, Brown, Green, Grey, Orange, Pink, Purple, Red, White, Yellow

 

参考文献:

[1] Y. Deng, P. Luo, C. C. Loy, X. Tang, "Pedestrian attribute recognition at far distance," in Proceedings of ACM Multimedia (ACM MM), 2014

 

 

### 回答1: PETA(Pedestrian Attribute Dataset)是一个用于行人属性识别的大规模数据集,包含超过19000个行人图像。尽管PETA数据集行人属性识别领域具有广泛的应用价值,但也存在一些缺点需要处理。 首先,PETA数据集中的图像质量不一致。这意味着图像的分辨率、光照条件和拍摄角度等方面存在差异。这会对图像处理和特征提取带来困难,从而影响行人属性识别的性能。要解决这个问题,可以尝试使用图像增强技术,如去噪、对比度增强和直方图均衡化等方法来改善图像质量。 其次,PETA数据集中的标注不准确。由于人工标注的主观性和标注者之间的差异性,可能会导致属性的错误标注。这会对训练模型造成误导,从而影响行人属性识别的准确性。为了解决这个问题,可以考虑使用多个标注者对同一数据集进行标注,并采取投票或多标签学习的方法来生成更准确的标签。 另外,PETA数据集中的样本类别不平衡。即使在大规模数据集中,不同的属性类别的样本数量也可能存在明显的不均衡。这可能导致训练过程中某些属性类别的重要性被低估,从而影响行人属性识别的性能。为了解决这个问题,可以采用各种策略,如欠采样、过采样或生成合成样本等方法来平衡数据集中不同类别的样本数量。 综上所述,PETA数据集行人属性识别领域有着广泛的应用,但也存在图像质量差异、标注不准确和样本类别不平衡等缺点需要处理。通过图像增强、准确的标注和样本平衡等方法,可以改善数据集的质量,提高行人属性识别的精度和鲁棒性。 ### 回答2: PETA(Pedestrian Attribute)数据集是一个广泛用于行人图像识别和行为分析的数据集。虽然PETA数据集具有一定的优势,但也存在一些缺点,需要进行一定的处理。 首先,PETA数据集的标注质量存在一定的问题。由于人工标注的主观性和标注者之间的差异,PETA数据集中的一些标注可能存在误差或不一致性,这可能导致算法在使用该数据集进行训练时出现一定程度的性能下降。 其次,PETA数据集中的样本类别不够全面。虽然PETA数据集中包含了一些常见的行人属性,如性别、年龄、衣着颜色等,但在现实场景中,行人可能还有其他更具挑战性的属性,如姿态、表情等。因此,对于某些应用场景,PETA数据集可能无法提供足够的样本信息和多样化的属性特征。 此外,PETA数据集的规模相对较小。对于深度学习等需要大规模训练样本的场景,PETA数据集的规模可能无法满足需求。规模较小的数据集容易导致模型的泛化能力不足,无法良好适应复杂的实际场景。 针对PETA数据集的缺点,可以进行一些处理。首先,可以通过增加标注者的数量和标注一致性的要求来提高标注质量,减少误差。其次,可以通过与其他行人数据集进行融合,以丰富样本的多样性和覆盖更广泛的属性信息。最后,可以采用数据增强技术,通过旋转、缩放、裁剪等操作来扩充数据集的规模,提高模型的泛化能力和性能。 综上所述,尽管PETA数据集存在一些缺点,但通过适当的处理方法,可以弥补这些缺点,提高数据集的质量和适用性。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值