
联邦学习
文章平均质量分 84
趣链科技
深度分析区块链领域,专注区块链技术,探索去中心化应用场景。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
联邦学习这件小事(二)
前 言 上一篇我们讲述了人工智能,机器学习与联邦学习的关系。 回顾上文????《联邦学习这件小事》 这篇我们将继续探索联邦学习方法的分类。联邦学习方法被分为横向联邦学习、纵向联邦学习和迁移联邦学习三类,适用于解决不同的实际问题。 横向联邦学习 在两个数据集的用户特征重叠较多而用户重叠较少的情况下,把数据集按照用户维度切分,并取出双方用户特征相同而用户不完全相同的那部分数据进行训练。这种方法叫做横向联邦学习(如下图)。 ▲ 应用场景 横向联邦学习的本质是样本的联合,适用于参与者间业态相同但触达客户不同,即特原创 2021-06-21 13:44:53 · 401 阅读 · 2 评论 -
“创意”保卫战——MPC隐私查询算法
背景介绍 我叫小明,是一个每天喜欢胡思乱想的打工人。 随着年轻人的创业热潮的到来,我有一种创业的冲动。经过长时间的探索,我现在萌生出了一个极具创造性的点子,如果以此为依据进行创业的话一定会引起热潮。 图片 首先,为了确定我的想法是不是独一无二的,我必须先通过搜索引擎进行查询。这里有一个我很在意的问题——我在搜索引擎里搜索了我的创意,浏览器会将我的创意直接发送给搜索引擎的服务器,如果我的创意确实是独一无二的,那这样直白的搜索方式一定会把我的创业完全暴露出来,这对我来说非常致命,我绝对不能让任何人有窃取我创意的原创 2021-05-06 13:45:14 · 555 阅读 · 6 评论 -
联邦学习这件小事
背 景 计算机学院的学生小A意图使用大数据及人工智能的相关技术完成自己的一个课题《大学生男生生活费消费行为的偏好分析》,然而苦于数据量不够,便寄希望于身边的朋友以及学校的广大男性同学,原本以为是一件轻而易举的事,然而… 由于个人隐私易泄露,数据交易难定价,合作者激励制度不健全,以及恶意提供无用或者虚假数据等问题,收集真实且有价值的的数据远比想象中难。 而近两年来,“联邦学习”被学术界和工业界经常提及,联邦学习究竟是什么,为何能解决以上问题,我们从它的前世今生开始慢慢揭开面纱。 ▲ 人工智能(AI)是什么原创 2021-03-26 14:32:50 · 490 阅读 · 0 评论