Pandas中的缺失值分析:None 与 NaN 的区别

Python中的None

None是Python自带的,其类型为python object。因此,None不能参与到任何计算中。

# None是个python对象, 它是不能参与到任何计算中
type(None) # NoneType

# None + 1 # TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

np.nan(NaN)

np.nan是浮点类型,能参与到计算中。但计算的结果总是NaN。

但可以使用np.nan*()函数来计算nan,此时视nan为0。

import numpy as np

# np.nan是浮点类型
type(np.nan) # float

# 可以参与计算, 但是结果总是np.nan
np.nan + 1 # nan

# np.nansum函数中,np.nan 看成0参与计算中
np.nansum(np.array([1, 2, 3, np.nan]))  # 6.0

pandas中的None与NaN

pandas中None与np.nan处理成np.nan

from pandas import DataFrame, Series
import pandas as pd
data = np.random.randint(0, 150, size=(4, 4))
index = ['张三', '李四', '王五', '赵六']
columns = ['语文', '数学', '英语', 'python']
df = DataFrame(data=data, index=index, columns=columns)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值