数据增强——像素维度的改变

本文深入探讨了数据增强技术,特别是针对图像数据的处理方法。详细介绍了光度畸变和几何畸变两大类处理方式,包括颜色空间调整、亮度对比度变化、尺度缩放、裁剪、翻转和旋转等具体操作。同时,提到了Keras和TensorFlow框架下的数据增强函数,为读者提供了实际应用的指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统的数据增强方法主要针对像素信息进行处理,主要从光度畸变和几何畸变两方面进行处理。

  1. 光度畸变:颜色空间、图片亮度、对比度、色调、饱和度、噪声等;
  2. 几何畸变:尺度缩放、裁剪、翻转、旋转等。

不同框架实时的数据增强函数

数据增强的基础实现函数

  • 尺度变换、平移、旋转、翻转、椒盐噪声、投影变换;

 

 

 

参考文献:

  1. yoloV4
  2. 图像预处理

  3. How to Configure Image Data Augmentation in Keras

  4. Data Augmentation Techniques in CNN using Tensorflow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值