循环优化与数据科学专业人员薪酬建模研究
循环优化相关内容
在程序中,循环部分往往会占用大量的执行时间,因此对循环进行优化至关重要。常见的循环优化技术包括不变代码处理、归纳分析、循环展开、循环融合、循环移位、强度削弱和死代码消除等。
- 不变代码 :循环内部每次迭代都计算相同值的代码段,可将其移到循环外部,避免重复处理。
- 归纳变量 :在循环内其值由循环不变值改变的变量。
- 循环展开 :根据循环下标,多次替换循环内的代码。例如,展开后的函数可能只需执行四条语句就能完成,而普通函数可能需要两倍以上的迭代次数。
- 循环融合 :当有两个或更多具有相同迭代次数的循环时,将所有语句放在一个具有相同迭代次数的单循环中。
- 死代码消除 :那些永远不会执行或执行后对输出无影响的简单或复合语句,为了优化应将其消除。
作者使用了单核心、双核心和多核心等多种处理器,对不同大小(从 300×300 到 2000×2000,步长为 300)的矩阵乘法算法进行了实验。评估了每个算法集的平均处理时间,并比较了使用和不使用 OpenMP(OMP)时的情况。具体数据如下表所示:
|矩阵大小|不使用 OMP|使用 OMP|
| ---- | ---- | ---- |
|300×300|0.9292|0.3192|
|600×600|3.6611|1.3183|
|900×900|11.3682|3.4266|
|1200×1200|