GPU教程之开始在 Python 中快速使用 GPU 进行数据科学项目(教程含源码)

本文介绍了如何在Linux Ubuntu上配置GPU环境进行数据科学项目,包括安装Nvidia驱动、使用Conda环境搭建PyTorch和Pycaret、监控GPU工具nvitop的安装以及Nvidia容器的探索。通过实例演示了如何在GPU上运行PyTorch代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过去几个月,数据科学项目的一个强劲增长趋势是对计算资源的需求不断增加,这是由于更大的数据集、更复杂的问题和模型,以及一些建模任务,如再训练和超参数微调。

GPU已被证明在加速大规模计算方面非常强大,但是,有时正确配置和设置完整的 GPU 环境可能会很棘手。幸运的是,有一些开源工具专门用于简化 GPU 的软件配置,包括驱动程序和数据科学库。

在这篇文章中,展示了如何在 Linux-Ubuntu 机器上使用 GPU 配置和开始快速使用数据科学项目中的一些常用库,我们将按照以下步骤操作:

  • 1 Nvidia驱动安装
  • 2 库安装:Pytorch 和 Pycaret
  • 3 监控 GPU 工具
  • 4 个用于 GPU 的 Nvidia 容器
  • 5 演示

开始吧!

1 Nvidia驱动安装

1.1要开始使用 Nvidia-GPU

要开始使用 Nvidia-GPU,需要安装 GPU 驱动程序。在 Ubuntu 中,可以使用包管理器中提供的默认驱动程序版本来完成。

在这里插入图片描述

1.2使用最新的驱动程序版本

GPU 软件发展迅速,因此无法使用最新的驱动程序版本。为了解决这个问题,我们可以通过下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值