微调 Llama 2 以进行新闻类别预测:微调任何 LLM 的分步综合指南(第 1 部分)

这篇博客详述了如何微调 Meta 的 Llama 2 模型进行新闻类别预测,包括安装库、登录 Hugging Face、加载模型和数据集、预处理数据等步骤。适用于想要微调大型语言模型的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微调任何法学硕士的分步综合指南。

在这篇博客中,我将指导您完成对 Meta 的Llama 2 7B模型进行微调的过程,以实现 18 个不同类别的新闻文章分类。我将利用之前使用GPT 3.5创建的新闻分类指令数据集。

本笔记本的目的是提供全面的分步教程,用于微调任何 LLM(大型语言模型)。与许多可用的教程不同,我将详细解释每个步骤,涵盖使用的所有类、函数和参数。

本指南将分为两部分:

第 1 部分:微调的设置和准备 [此博客]

安装并加载所需的模块
Meta 的 Llama 2 系列型号获得批准的步骤
设置 Hugging Face CLI 和用户身份验证
加载预训练模型及其关联的分词器
加载训练数据集
预处理训练数据集以进行模型微调

第 2 部分:微调和开源

配置 PEFT(参数高效微调)方法 QLoRA 进行高效微调
微调预训练模型
保存微调模型及其关联的分词器
将微调后的模型推送至 Hugging Face Hub 供公众使用
请注意,在 CPU 上运行它实际上是不可能的。如果在 Google Colab 上运行,请转至运行时 > 更改运行时类型。将硬件加速器更改为 GPU。将 GPU 类型更改为 T4。将运行时形状更改为高 RAM

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值