如何在没有矢量数据库的情况下进行 RAG 知识图谱就是您所需要的

本文探讨了在没有矢量数据库的情况下,如何利用知识图谱进行长期记忆更新,通过RAG(检索增强生成)的示例详细解释了知识图谱的构建和推理过程,包括概念确定、邻居查找、关系创建、上下文添加等步骤,并讨论了时间推理和方法的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

当谈到赋予大型语言模型(LLM)长期记忆时,流行的方法通常涉及检索增强生成(RAG)解决方案,其中向量数据库充当长期记忆的存储机制。这就引出了一个问题:如果没有矢量数据库,我们能否获得相同的结果?

我们将首先探索知识图谱更新的工作原理,并通过两个具体示例来阐明该过​​程。接下来,我们将通过另一个示例检查 RecallM 的推理机制,展示它如何利用知识图谱来生成响应。我们的讨论还将涵盖时间推理的示例,展示 RecallM 在理解和应用基于时间的知识方面的熟练程度。最后,我们将讨论这种方法的局限性,提供对其功能和进一步开发领域的平衡看法。

知识图谱更新

第一轮:添加新事实

假设我们想将以下句子添加到知识图谱中:

布兰登喜欢咖啡

以下是我们需要做的:

第 1 步:确定概念

概念基本上是句子中可以与另一个概念有关系的名词。

概念将是知识图中的节点。

此外,为了避免重复,我们将概念小写并保留为其词根形式。

所有这些都可以使用像Stanza这样的 NLP 包来完成。

以下是使用 Stanza 对句子“Brandon Loves Coffee”的注释:

[
  [
    {
      "id": 1,
      "text": "Brandon",
      "lemma": "Brandon",
      "upos": "PR
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值