介绍
当谈到赋予大型语言模型(LLM)长期记忆时,流行的方法通常涉及检索增强生成(RAG)解决方案,其中向量数据库充当长期记忆的存储机制。这就引出了一个问题:如果没有矢量数据库,我们能否获得相同的结果?
我们将首先探索知识图谱更新的工作原理,并通过两个具体示例来阐明该过程。接下来,我们将通过另一个示例检查 RecallM 的推理机制,展示它如何利用知识图谱来生成响应。我们的讨论还将涵盖时间推理的示例,展示 RecallM 在理解和应用基于时间的知识方面的熟练程度。最后,我们将讨论这种方法的局限性,提供对其功能和进一步开发领域的平衡看法。
知识图谱更新
第一轮:添加新事实
假设我们想将以下句子添加到知识图谱中:
布兰登喜欢咖啡
以下是我们需要做的:
第 1 步:确定概念
概念基本上是句子中可以与另一个概念有关系的名词。
概念将是知识图中的节点。
此外,为了避免重复,我们将概念小写并保留为其词根形式。
所有这些都可以使用像Stanza这样的 NLP 包来完成。
以下是使用 Stanza 对句子“Brandon Loves Coffee”的注释:
[
[
{
"id": 1,
"text": "Brandon",
"lemma": "Brandon",
"upos": "PR