如何使用 Llama 3 为本地文件构建生成搜索引擎 在本地使用 Qdrant、NVidia NIM API 或 Llama 3 8B 作为本地 GenAI 助手

本文介绍了如何使用 Llama 3、Qdrant 和 NVidia NIM API 构建本地文件的生成搜索引擎。系统设计包括语义索引、搜索 API 和用户界面。首先,通过 Qdrant 创建语义索引,利用微调的模型处理非对称搜索问题。接着,创建 Web 服务以执行搜索和生成答案。最后,用 Streamlit 构建简单的用户界面,提供交互体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系统设计

为了构建本地生成搜索引擎或助手,我们需要几个组件:

包含本地文件内容的索引,使用信息检索引擎检索与给定查询/问题最相关的文档。
一种语言模型,使用从本地文档中选择的内容并生成总结性的答案
用户界面
下图显示了组件如何交互。

系统设计和架构。Qdrant 用于矢量存储,Streamlit 用于用户界面。Llama 3 可通过 Nvidia NIM API(70B 版本)使用,也可通过 HuggingFace(8B 版本)下载。文档分块使用 Langchain 完成。
首先,我们需要将本地文件编入索引,以便查询本地文件的内容。然后,当用户提出问题时,我们将使用创建的索引以及一些不对称段落或文档嵌入来检索可能包含答案的最相关文档。这些文档的内容和问题被传递给已部署的大型语言模型,该模型将使用给定文档的内容来生成答案。在指令提示中,我们将要求大型语言模型也返回对所用文档的引用。最终,所有内容都将在用户界面上向用户可视化。

现在,让我们更详细地了解每个组件。

语义索引

我们正在构建一个语义索引,该索引将根据文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值