知识图谱大模型系列之 11什么是 Neo4j LLM 知识图谱构建器?

简介

LLM 知识图谱构建器是Neo4j 的 GraphRAG 生态系统工具之一,可让您将非结构化数据转换为动态知识图谱。它与检索增强生成 (RAG) 聊天机器人集成,可实现自然语言查询和对数据的可解释洞察。

推荐文章

系列文章

### 使用大型语言模型(LLM)与 Neo4j 数据库构建知识图谱 #### 构建流程概述 为了创建高质量的知识图谱,可以采用一种现代的数据建模方法来提升RAG(检索增强生成)模型的效果[^1]。此过程涉及多个阶段的工作流设计和技术栈的选择。 #### 技术准备 - **环境搭建**:确保安装并配置好Neo4j数据库实例以及选定的大规模预训练语言模型(LLMs),比如通过Python接口连接到FastAPI服务端点以执行CRUD操作[^2]。 - **工具集成**:利用像`LangChain`这样的框架能够简化应用程序开发周期,并提供强大的文本处理能力支持图结构化信息提取[^3]。 #### 实施步骤说明 ##### 数据收集与清洗 从各种来源获取原始资料之后,对其进行必要的清理工作以便后续分析使用。这一步骤可能涉及到去除噪声、标准化格式等内容转换任务。 ##### 图模式定义 根据业务需求确立实体间的关系类型及其属性字段设定;同时考虑性能优化因素合理规划索引策略等细节设置。 ##### 自动化节点关系抽取 借助于所选LLM的强大自然语言理解(NLU)特性自动识别文档中的关键概念作为潜在节点候选对象,并推断它们之间存在的关联形式从而形成边链接表达方式。 ```python from langchain import LangChain import neo4j def extract_entities(text): # 假设这里有一个函数可以从给定文本中抽取出实体列表 entities = ["entity1", "entity2"] session = neo4j.Session() for entity in entities: query = f"MATCH (n:{entity}) RETURN n" result = session.run(query) if not list(result): create_query = f"CREATE (:Entity {{name:'{entity}'}})" session.run(create_query) text_data = "example text data here." extract_entities(text_data) ``` ##### 知识表示映射 将非结构化的描述性陈述转化为机器可读的形式存储于图数据库内,使得计算机更容易理解和查询复杂多变的事实集合体。 ##### 应用场景拓展 除了基本的信息检索外,还可以进一步探索其他可能性领域应用案例研究,例如推荐系统、路径查找算法或是因果推理机制等方面的价值挖掘潜力评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值