介绍
大型语言模型 (LLM) 的出现改变了自然语言处理 (NLP) 的格局。这些模型在海量数据集上进行训练,在理解和生成类似人类的文本方面表现出了令人印象深刻的能力。然而,它们在专业领域的表现通常需要对特定领域的数据进行微调。本文深入研究了使用 AviationQA 数据集微调 Meta-Llama-3–8B 模型的过程,探索了用于增强模型航空知识的方法和超参数设置。
微调是将预训练模型应用于特定任务的关键步骤。我们正在使用sakharamg/AviationQA数据集对meta-llama/Meta-Llama-3–8B模型进行微调。此过程使我们能够根据航空相关问题和答案的特定语言和细微差别来定制模型的广泛语言理解能力。