tensorflow基础知识8,可视化工具tensorboard运用实例

本文通过修改MNIST程序,展示了如何使用TensorBoard进行算法图形的可视化。在训练过程中,TensorBoard生成了events.out.tfevents.1549613324文件,通过指定logdir运行TensorBoard并访问http://localhost:6006,可以查看直观的图形界面。进一步地,通过使用name_scope改进程序结构,使TensorBoard的图形更加清晰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、修改之前的mnist程序,利用tensorboard显示算法图形,桃色字体为tensorboard部分

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据
mnist=input_data.read_data_sets('mnist_data',one_hot=True)#noe_hot把像素点都转变成0或1的形式


#每个批次的大小,训练模型时,一次放入一批次
batch_size=100 #一批次100张图
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size# //是整除,得到批次数

#命名空间
with tf.name_scope('input'):  #命名随意,比如input,下面的x和y要缩进,表示x,y放在input空间
#定义两个placeholder,配合上面命名空间,给x,y取个名字
   x=tf.placeholder(tf.float32,[None,784],name='x-input')#建立一个占位符,None是图片数,784是每幅图的像素个数
   y=tf.placeholder(tf.float32,[None,10],name='y-input')# 标签,建立一个占位符,10是指0-9十个数

#创建一个简单的神经网络,输入层784个神经元,输出层10个神经元,不设隐藏层
W=tf.Variable(tf.zeros([784,10]))#权值,设一个变量,置0
b=tf.Variable(tf.zeros([10]))#偏置值
prediction=tf.nn.softmax(tf.matmul(x,W)+b)#信号总和,经过softmax函数(激活函数)转化成概率值

#二次代价函数
#loss =tf.reduce_mean(tf.square(y-prediction))

#使用交叉熵代价函数
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(la
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值