import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集
mnist=input_data.read_data_sets('mnist_data',one_hot=True)
#输入图片是28*28
n_inputs=28#输入一行,一行有28个数据。输入层有28个神经元
max_time=28#一共28行
lstm_size=100#隐藏层单元,也就是隐藏层有多少个神经元
n_classes=10#10个label分类
batch_size=50#每批次50个样本
n_batch=mnist.train.num_examples//batch_size#计算一共有多少个批次,//是整除,得到批次数
#这里的none表示第一个维度可以是任意的长度
x=tf.placeholder(tf.float32,[None,784])#建立一个占位符,None是图片数,784是每幅图的像素个数
y=tf.placeholder(tf.float32,[None,10])# 标签,建立一个占位符,10是指0-9十个数
#初始化权值
weights=tf.Variable(tf.truncated_normal([lstm_size,n_classes],stddev=0.1))#[lstm_size,n_classes]是数据形状,二维矩阵,lstm_size是行数,n_classes是列数
#初始化偏置值
biases=tf.Variable(tf.constant(0.1,shape=[n_classes]))
#定义RNN网络
def RNN(X,weights,biases):
inputs=tf.reshape(X,[-1,max_time,n_inputs])#把X转换为[-1,max_time,n_inputs]数据形式,-1代表不确定性
#定义LSTM基本CELL
lstm_cell=tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(lstm_size)
#final_stat
循环神经网络RNN,实例
最新推荐文章于 2023-09-27 08:07:27 发布