
Computer Vision
文章平均质量分 61
iamzhangzhuping
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像的纹理特征
什么是图像的纹理?纹理是一种不依赖于颜色或亮度变化的反映图像中同质现象的视觉特征,刻画了图像像素邻域灰度空间分布的规律。它是所有物体表面都具有的内在特性,不同物体具有不同的纹理,如云彩,树木,砖,织物等都有各自的纹理特征。纹理特征包含了物体表面结构组织排列的重要信息以及它们与周围环境的联系,人类的视觉系统对外部世界的感知有赖于物体所表现出的纹理特征。纹理分析则是计算机视觉和数字图像处理中的一个原创 2015-11-04 20:58:56 · 5788 阅读 · 0 评论 -
Faster RCNN blob.py
def im_list_to_blob(ims):将图像转换成blob(np.ndarray)def im_list_to_blob(ims): """Convert a list of images into a network input. Assumes images are already prepared (means subtracted, BGR order原创 2016-05-15 19:40:53 · 1815 阅读 · 0 评论 -
Faster RCNN layer.py
def setup(self, bottom, top)方法: 该方法主要是在创建RoIDataLayer的时候调用。结合_caffe.cpp里面.def("setup", &Layer::LayerSetUp),个人猜测(水平有限),setup(self, bottom, top)应该还是调用底层的Layer::LayerSetUp方法,同时bottom, top也分别对应着:const vec原创 2016-05-15 19:41:42 · 3759 阅读 · 0 评论 -
编译第一个opencv测试程序
g++ -o test1 test1.cpp -I/usr/local/include -I/usr/local/include/opencv -I/usr/local/include/opencv2 -L/usr/local/lib /usr/local/lib/*.so原创 2016-04-17 13:07:51 · 1728 阅读 · 0 评论 -
Faster RCNN roi_pooling_layer.cpp roi_pooling_layer.cu
主要定义了一个 ROIPoolingLayer 类ROIPoolingLayer的受保护数据成员有:int channels_;int height_;int width_;int pooled_height_; // pooling后的特征图的height_int pooled_width_; // pooling后的特征图的width_Dtype spatial_scale_; //原创 2016-05-25 17:25:24 · 6721 阅读 · 0 评论 -
Faster RCNN minibatch.py
def _sample_rois(roidb, fg_rois_per_image, rois_per_image, num_classes) 在 def get_minibatch(roidb, num_classes) 中调用此函数,传进来的实参为单张图像的roidb ,该函数主要功能是随机组合sample of RoIs, 来生成前景样本和背景样本。def _sample_rois(原创 2016-05-15 19:40:30 · 3942 阅读 · 0 评论 -
Faster RCNN anchor_target_layer.py
class AnchorTargetLayer(caffe.Layer): """ Assign anchors to ground-truth targets. Produces anchor classification labels and bounding-box regression targets. """ def setup(self, botto原创 2016-05-17 11:13:49 · 6080 阅读 · 1 评论 -
Faster RCNN train_faster_rcnn_alt_opt.py
def get_roidb(imdb_name, rpn_file=None):def get_roidb(imdb_name, rpn_file=None): imdb = get_imdb(imdb_name) #返回一个pascal_voc类对象 print 'Loaded dataset `{:s}` for training'.format(imdb.name)原创 2016-05-15 19:38:02 · 2018 阅读 · 1 评论 -
Faster RCNN imdb.py
def merge_roidbs(a, b) 类imdb的静态方法,将a b两个roidb归并为一个roidb@staticmethod def merge_roidbs(a, b): assert len(a) == len(b) for i in xrange(len(a)): # boxes 采用vstack原创 2016-05-15 19:38:48 · 2812 阅读 · 0 评论 -
Faster RCNN roidb.py
1. roidb是一个列表,列表元素为字典2. prepare_roidb 函数def prepare_roidb(imdb): """Enrich the imdb's roidb by adding some derived quantities that are useful for training. This function precomputes the m原创 2016-05-15 19:39:23 · 4475 阅读 · 0 评论 -
Faster RCNN pascal_voc.py
主要定义了一个pascal_voc类,在类的内部定义了它的一些属性和方法。def _init_(self, image_set, year, devkit_path=None) 构造器方法def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_'原创 2016-05-15 19:39:52 · 3014 阅读 · 0 评论 -
Faster RCNN train.py
定义了一个类:class SolverWrapperclass SolverWrapper(object): """A simple wrapper around Caffe's solver. This wrapper gives us control over he snapshotting process, which we use to unnormalize原创 2016-05-15 19:43:04 · 3197 阅读 · 0 评论 -
Faster-rcnn
最后更新日期:2016年4月29日本教程主要基于python版本的faster R-CNN,因为python layer的使用,这个版本会比matlab的版本速度慢10%,但是准确率应该是差不多的。目前已经实现的有两种方式:Alternative training Approximate joint training 推荐使用第二种,因为第二种使用的显存更小,而且训练会更快,同时准确率差不多甚至原创 2016-05-08 12:33:24 · 2954 阅读 · 0 评论 -
Faster RCNN proposal_layer.py
定义了一个 ProposalLayer 类, 在rpn_test.pt中会用到。class ProposalLayer(caffe.Layer): """ Outputs object detection proposals by applying estimated bounding-box transformations to a set of regular boxes原创 2016-05-23 18:53:23 · 6533 阅读 · 0 评论 -
Dlib:shape_predictor 与 full_object_detection
dlib::shape_predictor , dlib::full_object_detection 是dlib里面的两个两个类,最近在做一个人脸的项目的时候需要用到它们,也是第一次使用Dlib,感觉这是一个比较新的一个开源机器学习库。本人也是刚开始学习,后续会更新先上一段源码,shape_predictor:class shape_predictor { /*!原创 2016-06-16 21:55:59 · 14408 阅读 · 2 评论 -
matlab 读取图片的格式
dlib::shape_predictor , dlib::full_object_detection 是dlib里面的两个两个类,最近在做一个人脸的项目的时候需要用到它们,也是第一次使用Dlib,感觉这是一个比较新的一个开源机器学习库。本人也是刚开始学习,后续会更新先上一段源码,shape_predictor:class shape_predictor { /*!原创 2016-07-17 18:19:27 · 6041 阅读 · 0 评论 -
FCN中的transplant
FCN中的surgery.transplant函数用于拷贝learnable参数,其直接目的是:将VGG分类模型中的一些全连接层的参数正确地拷贝到相应的目标全连接层中。代码如下:def transplant(new_net, net, suffix=''): """ Transfer weights by copying matching parameters, coercing p原创 2017-05-10 18:58:01 · 1313 阅读 · 1 评论 -
OpenCV3.0 HOG+SVM行人检测器
介绍什么的请参考:利用Hog特征和SVM分类器进行行人检测我只说一下Opencv3.0里面,需要注意的地方。 本人接触OpenCV很短的时间,新手。OpenCV3.0相比2.X,接口更加清晰,还是有很大的改动的。 主要有几个需要注意的地方: 1. sampleLabelMat的数据类型必须为有符号整数型。 2. 加载已经训练好的分类器,需要注意: svm = SVM::load<SVM>(原创 2016-04-26 21:49:02 · 11270 阅读 · 11 评论 -
OpenCV: resize
OpenCV改变图像大小的操作有两类:resize与图像金字塔,但是这两类操作差别还是比较大的。 一、resize 函数原型 void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR ) 各个参数的意义比较直观,但是需要注意转载 2016-04-26 21:32:15 · 683 阅读 · 0 评论 -
Bag of Features 方法
http://blog.csdn.net/chlele0105/article/details/96333971.首先,我们用surf算法生成图像库中每幅图的特征点及描述符。2.再用k-means算法对图像库中的特征点进行训练,生成类心。3.生成每幅图像的BOF,具体方法为:判断图像的每个特征点与哪个类心最近,最近则放入该类心,最后将生成一列频数表,即初步的无权BOF。转载 2015-11-08 14:49:14 · 817 阅读 · 0 评论 -
论文笔记: Efficient Graph-Based Image Segmentation
Efficient Graph-Based Image Segmentation 是2004年由Felzenszwalb发表在IJCV上的一篇文章。主要介绍了基于图表示的图像分割。并且提出了一种基于贪心选择的图像分割方法,此方法能够考虑到全局特征。根据距离度量方式的不同,此算法有两种具体的实现形式。结果表明算法的运行时间接近于线性(相对于图中边的个数来说)。此算法的更重要的特性在于,在特征变化较小原创 2015-11-09 11:03:25 · 969 阅读 · 0 评论 -
AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图
http://blog.csdn.net/watkinsong/article/details/7631241目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上找到的所有的AdaBoost的简介都不是很清楚,让我看看头脑发昏,所以在这里打算花费比较长的时间做一个关于AdaBoost算法的详细总结。希望能对以后用AdaBoost的同学有所帮助。而且给出了关于转载 2015-11-11 15:00:11 · 817 阅读 · 0 评论 -
AdaBoost中利用Haar特征进行人脸识别算法分析与总结2——级联分类器与检测过程
http://blog.csdn.net/watkinsong/article/details/7631949上一篇连接:http://blog.csdn.net/weixingstudio/article/details/7631241 1. 弱分类器在确定了训练子窗口中的矩形特征数量和特征值后,需要对每一个特征f ,训练一个弱分类器h(x,f,p,O) 。转载 2015-11-11 15:01:27 · 739 阅读 · 0 评论 -
关于2006_CVPR_Beyond Bags of Features Spatial Pyramid Matching for Recognizing Natural Scene Categorie
http://blog.csdn.net/love_yanhaina/article/details/8794694先mark一下!后续在自己总结~对这篇paper及对应code研究好久了,也困惑了好久,现在终于有点明白是怎么回事了,赶紧记下来对应代码的整个算法过程如下(代码是丕子的):Step1 用均匀网格划分图像。程序中采用8*8像素,即gridspace=转载 2015-10-27 10:30:19 · 1176 阅读 · 0 评论 -
Histogram intersection(直方图交叉核,Pyramid Match Kernel)
http://blog.csdn.net/smartempire/article/details/23168945看关于LBP人脸识别的论文时提到了Histogram intersection这个方法,方法最初来自The Pyramid Match Kernel:Discriminative Classification with Sets of Image Features这转载 2015-10-30 21:44:46 · 707 阅读 · 0 评论 -
PASCAL VOC Challenge
http://grunt1223.iteye.com/blog/970449在计算视觉的领域中,Pascal VOC Challenge 就好比是数学中的哥德巴赫猜想一样。Pascal的全称是Pattern Analysis, Statical Modeling and Computational Learning。每年,该组织都会提供一系列类别的、带标签的图片,挑战者通过设计各种精妙的算转载 2015-10-31 20:17:34 · 1300 阅读 · 0 评论 -
论文笔记:Rich feature hierarchies for accurate object detection and semantic segmentation
主要参考:http://www.lxway.com/551256526.htm在这里,我只note一下一些比较重要的地方。1. mAP: mean average precision2. 在将region缩放到CNN所要求的size时,文中为:In order to compute features for a region proposal, we must first co原创 2015-11-02 21:11:52 · 932 阅读 · 0 评论 -
github上计算机视觉学习资源
Awesome Computer Vision: A curated list of awesome computer vision resources, inspired by awesome-php.For a list people in computer vision listed with their academic genealogy, please visit he原创 2016-01-20 19:52:55 · 2565 阅读 · 0 评论 -
计算机视觉中常用数据集
计算机视觉数据集WallFlower dataset: 用于评价背景建模算法的好坏. Ground-truth foreground provided. Foreground/Background segmentation and Stereo dataset: from Microsoft Cambridge. VISOR: Video Surveillance Online R原创 2016-01-20 19:53:50 · 2929 阅读 · 0 评论 -
Tessract 训练流程
训练流程参考链接创建training_text.txt文件利用text2image工具将training_text.txt文件生成对应的图像文件eng.freemono.exp0.tif和box信息文件eng.freemono.exp0.boxtext2image –text=training_text.txt –outputbase=[lang].[fontname].exp0 –font=原创 2016-03-09 17:51:01 · 2285 阅读 · 0 评论 -
抽空了解一下opencv的文件系统结构
抽空了解一下opencv的文件系统结构。先上图,这是opencv 源码解压后的截图。 然后是编译后的文件系统截图~/opencv-3.0.0-rc1 对比可知,opencv工程经编译后,主要的变化是得到了一个build文件夹。然后是~/opencv-3.0.0-rc1/build文件夹截图 而build文件下,主要的也是一个lib文件夹,里面是各种编译好的库,主要是共享库。~/openc原创 2016-02-29 20:01:14 · 744 阅读 · 0 评论 -
opencv Mat详解
参考链接:OpenCV系列(三):Mat详解 OpenCV官方:Mat OpenCV学习笔记(四十)——再谈OpenCV数据结构Mat详解转载 2016-04-26 21:26:01 · 645 阅读 · 0 评论 -
OpenCV:对XML和YAML文件实现I/O操作
OpenCV学习笔记(六)——对XML和YAML文件实现I/O操作转载 2016-04-26 21:27:26 · 424 阅读 · 0 评论 -
OpenCV : InputArray和OutputArray
OpenCV学习笔记(五十六)——InputArray和OutputArray的那些事core转载 2016-04-26 21:29:00 · 1022 阅读 · 0 评论 -
OpenCV矩阵操作
OpenCV矩阵操作转载 2016-04-26 21:30:09 · 329 阅读 · 0 评论 -
Faster RCNN generate.py
该模块的功能主要是生成rpn proposals。 + cv2.imread读取的图像的存储格式为H W K,且三通道的顺序为BGR + PIL.Image.open读取图片的存储格式为:W H (此时的数据为PIL库的某种对象),且三通道顺序为RGB 但是,当转换为np.array的时候,存储格式将H W K,常用的代码段为:def load_image(self, idx):原创 2016-05-15 19:41:18 · 5415 阅读 · 0 评论