代码如下
#include <iostream>
#include <vector>
#include <cmath>
// 定义支持向量机的数据结构
struct SVM {
int n; // 数据维度
double C; // 惩罚参数
std::vector<double> w; // 权重向量
double b; // 偏置项
};
// 计算向量x和y的内积
double dot(const std::vector<double>& x, const std::vector<double>& y) {
double res = 0.0;
for (int i = 0; i < x.size(); i++) {
res += x[i] * y[i];
}
return res;
}
// 计算SVM的损失函数
double loss(const SVM& svm, const std::vector<std::vector<double>>& X, const std::vector<int>& y) {
double res = 0.0;
for (int i = 0; i < X.size(); i++) {
res += std::max(0.0, 1 - y[i] * (dot(svm.w, X[i]) + svm.b));
}
return 0.5 * dot(svm.w, svm.w) + svm.C * res;
}
// 计算SVM的梯度
std::vector<double> gradient(const SVM& svm, const std::vector<std::vector<double>>& X, const std::vector<int>& y) {
std::vector<double> grad(svm.n, 0.0);
for (int i = 0; i < X.size(); i++) {
if (y[i] * (dot(svm.w, X[i]) + svm.b) < 1) {
for (int j = 0; j < svm.n; j++) {
grad[j] += -y[i] * X[i][j];
}
}
}
for (int j = 0; j < svm.n; j++) {
grad[j] = svm.w[j] + svm.C * grad[j];
}
return grad;
}
// 训练SVM模型
SVM train(const std::vector<std::vector<double>>& X, const std::vector<int>& y, double C, double learning_rate, int epochs) {
SVM svm;
svm.n = X[0].size();
svm.C = C;
svm.w = std::vector<double>(svm.n, 0.0);
svm.b = 0.0;
for (int epoch = 0; epoch < epochs; epoch++) {
std::vector<double> grad = gradient(svm, X, y);
for (int j = 0; j < svm.n; j++) {
svm.w[j] -= learning_rate * grad[j];
}
double sum_grad_b = 0.0;
for (int i = 0; i < X.size(); i++) {
if (y[i] * (dot(svm.w, X[i]) + svm.b) < 1) {
sum_grad_b += -y[i];
}
}
svm.b -= learning_rate * svm.C * sum_grad_b;
double l = loss(svm, X, y);
std::cout << "Epoch " << epoch << ", Loss: " << l << std::endl;
}
return svm;
}
// 对单个样本进行预测
int predict(const SVM& svm, const std::vector<double>& x) {
double y_pred = dot(svm.w, x) + svm.b;
return y_pred >= 0 ? 1 : -1;
}
// 对多个样本进行预测
std::vector<int> predict(const SVM& svm, const std::vector<std::vector<double>>& X) {
std::vector<int> y_pred;
for (int i = 0; i < X.size(); i++) {
y_pred.push_back(predict(svm, X[i]));
}
return y_pred;
}
int main() {
// 构造样本数据
std::vector<std::vector<double>> X = {{1, 2}, {2, 3}, {3, 1}, {4, 2}};
std::vector<int> y = {1, 1, -1, -1};
// 训练SVM模型
double C = 1.0;
double learning_rate = 0.01;
int epochs = 100;
SVM svm = train(X, y, C, learning_rate, epochs);
// 对新样本进行预测
std::vector<std::vector<double>> X_test = {{1, 1}, {3, 3}};
std::vector<int> y_pred = predict(svm, X_test);
for (int i = 0; i < y_pred.size(); i++) {
std::cout << "Sample " << i << ": " << y_pred[i] << std::endl;
}
return 0;
}
上述代码实现了一个简单的线性支持向量机(Linear SVM),使用梯度下降法(Gradient Descent)进行训练。在训练过程中,需要计算SVM的损失函数和梯度,并使用学习率(learning_rate)和惩罚参数(C)对权重向量和偏置项进行更新。在训练完成后,可以使用训练好的SVM模型对新的样本进行预测。
需要注意的是,SVM算法有很多变体,例如核函数SVM(Kernel SVM)等,实现方法和细节也有所不同。上述代码仅提供了一个简单的实现示例,具体实现方式需根据具体问题进行调整。