吴恩达deeplearning之CNN—深度卷积网络

本文介绍了卷积神经网络在计算机视觉领域的应用,从经典的LeNet、AlexNet到VGG-16,深入探讨了残差网络(ResNets)解决深度学习中梯度消失的问题,以及1×1网络和Inception模块在减少计算成本和提高性能上的作用。此外,还讨论了迁移学习和数据增强在训练模型中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.前言

  在卷积神经网络入门一节中,讲述了卷积神经网络的基本构建,比如卷积层、池化层以及全连接层,在过去很长一段时间,计算机视觉的大量研究都集中在如何组合这些基本构建,形成有效的神经网络。实际中在计算机视觉中表现良好的网络往往也适用于其它的任务,比如其它人训练了一个识别猫的网络结构,而你的任务是自动驾驶,你完全可以借鉴别人的神经网络框架。

2.经典网络:

  • LeNet-5
    这里写图片描述
    • 参数个数:约6万个
    • 随着网络越深,图像大小(nH,nW)在缩小,通道数(nC)在增加
    • 一个或多个卷积网络后面接池化层的思想至今仍在使用
    • 原论文[1]
  • AlexNet
    这里写图片描述
    • 参数个数:6000万个
    • 在训练图像和数据集时AlexNet能够用非常相似的基本构造模块,这些模块通常包含大量的隐藏单元或数据,这使得AlexNet有非常惊艳的效果。
    • AlexNet比LeNet表现好的另外一个原因是使用了Relu激活函数
    • 从这篇论文后人们开始确信深度学习可以应用于计算机视觉领域
    • 原论文[2]
  • VGG - 16
    这里写图片描述
    • 参数个数:1.38亿个参数
    • 每一组卷积网络的过滤器个数翻倍
    • vgg-16和vgg-19网络效果差不多,大部分人还是使用vgg-16
    • vgg-16 网络没有那么多的超参数,这是一种专注于构建卷积层的简单网络
    • vgg的优点是简化了神经网络结构
    • 原论文[3]

3.残差网络

  非常非常深的卷积网络是很难训练的,因为存在梯度消失和梯度爆炸问题,ResNets可以构建100层以上的神经网络。

  1. Residual Block(残差块)
    这里写图片描述
      假设有有一个两层的卷积网络,从l层到 l+2 层,通常神经网络的处理流程是:
  2. a[l]线性变换:z[l]=W[l+1]a[l]+b[l+1]
  3. RELU非线性激活:a[l+1]=g(z
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值