python series多重索引问题, 征求value_counts显示0值索引的方法

作者在处理数组问题时遇到循环计算量过大的难题。通过对原始代码进行优化,减少了计算过程中的无效开销,但仍希望进一步提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近做期末论文,在针对数组的处理问题上遇到了循环计算量太大的问题。我的部分原始代码如下:
数据集可以参考和鲸社区数据集:https://www.kesci.com/mw/dataset/58e893c49957300141f973dd

LC = pd.read_csv('D:/data_analysis/schoolwork/LC.csv', encoding='utf-8')
LP = pd.read_csv('D:/data_analysis/schoolwork/LP.csv', encoding='utf-8')

# 计算y帽子
LP1 = LP[['ListingId', '还款状态']]
count = LP1.value_counts(sort=False)
ymlist = []
ymindex = []
count0 = deepcopy(count)
for i in list(LP['ListingId'].drop_duplicates()):
    for j in range(5):
        count[(i,j)] = 0
    for j in range(5):
        try:
            count[(i,j)] = count0[(i,j)]
        except:
            continue
    ym = (count[(i,0)] + 0.5*(count[(i,2)]+count[(i,4)]))/np.array(count[i,]).sum()
    ymlist.append(ym)
    ymindex.append(i)
ymdata = pd.Series(data=ymlist, index=ymindex)

程序可以运行,但计算量太大,出现警告:PerformanceWarning: indexing past lexsort depth may impact performance. more = interpreter.add_exec(code_fragment)

结合警告提示信息,认为是没有使用多层索引,导致每次重复在全体数据集中定位count[(i,j)],产生了大量无效开销。为此,通过建立中间变量box,每次内循环只在box中遍历,改进程序如下:

LP1 = LP[['ListingId', '还款状态']]
count = LP1.value_counts(sort=False)
ymlist = []
ymindex = []
for i in list(LP1['ListingId'].drop_duplicates()):
    box = count.xs((i, ))
    box0 = deepcopy(box)
    for j in range(5):
        box[j] = 0
    for j in range(5):
        try:
            box[j] = box0[j]
        except:
            continue
    ym = (box[0] + 0.5*(box[2] + box[4])) / box.sum()
    ymlist.append(ym)
    ymindex.append(i)

虽然很慢,但已经可以运行出来了了。

最后,这个程序的目的就是将value_counts中为0的索引列出来。如果有大佬能够一步到位希望能够指点一下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

idiotic_bird

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值