dts 学习

Device Tree是一种数据结构。来源于OpenFirmware,最有名的Firmware是INTEL X86 BIOS系统。而Device Tree也正是应用在操作系统启动阶段。Device Tree这种数据结构,犹如它的名字,是一颗树(常见数据结构类型),包含有许多结点,结点中含有属性,属性中含有名字(name)和值(value)。树的信息主要包括:cpu的数量和类别,内存基地址,总线与桥,外设连接,中断控制器和中断使用情况,GPIO以及CLOCK器等等,Device Tree的源代码格式是.dts(device tree source)。在启动过程中,内核会展开Device Tree(此处是源代码编译后的.dtb文件),并创建和注册相关设备,驱动因此也以新方式和.dts中定义的设备结点进行匹配,然后工作。

  摘录自:http://blog.csdn.net/21cnbao/article/details/8457546,文章中有更详细的资料。

        另外还有一篇博文,也非常好,请点http://blog.csdn.net/jackyard/article/details/8523699

        以上两篇专注于dts的语法及如何编写。


      dts有dtc编译成dtb,在系统上电之后由 bootloader 加载到内存中,而这时dts在内存中只是一堆数据,如何放入链表中,可以参考这篇文章:http://blog.csdn.net/iefswang/article/details/38294311

        加载dts中的总线和平台设备。可以参考这篇文章:http://blog.csdn.net/ermuzhi/article/details/9289523

  

### 基于机器学习DTS降噪技术 支持向量机(SVMs)是在高维空间中非常有效的监督机器学习方法,通常用于分类问题[^1]。然而,在讨论基于机器学习DTS(Digital Theater System)降噪方法时,更多涉及的是音频处理领域内的特定算法和技术。 #### 使用SVM进行噪声检测与去除 对于DTS系统的降噪应用而言,可以采用如下策略: - **特征提取**:从原始音频信号中抽取能够有效表征声音特性的参数集。这些特性可能包括频谱能量分布、过零率以及梅尔频率倒谱系数(MFCC)[^2]。 - **训练模型**:利用标注好的干净语音样本及其对应的含噪版本构建数据集,并以此为基础训练一个二元分类器来区分正常音素和干扰成分。这里可以选择SVM作为核心算法之一,因为其具备良好的泛化能力和鲁棒性特点。 ```python from sklearn import svm import numpy as np # 构建训练集 X_train 和标签 y_train X_train = np.array([[0], [1]]) # 特征集 y_train = np.array([0, 1]) # 类别标记(0表示无噪音;1代表有) clf = svm.SVC(kernel='linear') # 创建线性核的支持向量分类器实例 clf.fit(X_train, y_train) # 训练模型 ``` - **实时预测与滤波**:当接收到新的输入流之后,先计算相应的声学属性并传递给已训练完成的学习器得到输出结果——即判断当前片段是否存在异常情况;随后依据判定结论采取相应措施予以修正或过滤掉不必要的部分。 值得注意的是,虽然上述流程展示了如何借助SVM实现基本框架下的DTS降噪功能,但在实际工程实践中往往还需要考虑诸如多通道同步处理、自适应调整阈值等因素的影响,从而确保最终效果达到预期目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值