opencv在图像方面的操作
一.Ubuntu下安装opencv-3.4.1
先拷贝opencv-3.4.1.zip到home目录下
再对压缩包进行解压
$ unzip opencv-3.4.1.zip
进入到刚解压的opencv-3.4.1目录下
$ cd opencv-3.4.1
再安装依赖库cmake
$ sudo apt install cmake
安装好程序之后,创建编译文件夹并进入文件夹进行配置
$ mkdir my_build_dir
然后进入文件夹进行配置
$ cd my_build_dir
运行一下cmake命令
$ sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg.dev libtiff5.dev libswscale-dev libjasper-dev
然后再输入下列代码
$ cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
接着就可以开始执行编译了
在执行编译时,有两种方式
1.单线程
$ sudo make
2.多线程
$ sudo make -j8
代码中的-j8表示的是八线程,这便与你的电脑处理器性能有关了,比如现在电脑处理器是i5-8300H,有8线程,如果是i7带H的处理器则有12线程,今年的AMD R7-4800H有16线程,大家可以在设备管理器里面查看自己的处理器有几个线程
在这里采用单线程方式执行,时间比较长,可以暂停改用多进程的方式
先ctrl+Z暂停,再输入执行多线程的代码。
执行命令
$ sudo make install
这样这个编译的过程就结束了
接下来,便是配置opencv的环节
输入下列代码,将OpenCV的库添加到路径,从而可以让系统找到
$ sudo gedit /etc/ld.so.conf.d/opencv.conf
执行之后会出现白色文本框,在文本框中输入
$ /usr/local/lib
保存后退出
执行
$ sudo ldconfig
使得配置的路径有效
接下来需要配置bash
$ sudo gedit /etc/bash.bashrc
在弹出的文本框中的最后一列添加以下代码
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH
保存之后输入以下命令更新配置
$ source /etc/bash.bashrc
$ sudo updatedb
这样,整个环境就配置好了
二.图像处理
(1)新建文件夹,并选择要处理的图片
在opencv -3.4.1下面新建文件夹mytest,并选择一张图片保存到目录下命名
$ cd opencv-3.4.1
再创建文件夹mytest
$ mkdir mytest
复制一张图片到home目录下,并将其复制到opencv-3.4.1这个文件夹中
(2)创建函数(c++)
创建cpp文件test.cpp
$ touch test.cpp
紧接着进入编程
$ gedit /test.cpp
复制下列代码:
#include <opencv2/highgui.hpp>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
CvPoint center;
double scale = -3;
IplImage* image = cvLoadImage("kirito.JGP");//切记图片命名要与程序中的命名相同包括大小写
argc == 2? cvLoadImage(argv[1]) : 0;
cvShowImage("Image", image);
if (!image) return -1; center = cvPoint(image->width / 2, image->height / 2);
for (int i = 0;i<image->height;i++)
for (int j = 0;j<image->width;j++) {
double dx = (double)(j - center.x) / center.x;
double dy = (double)(i - center.y) / center.y;
double weight = exp((dx*dx + dy*dy)*scale);
uchar* ptr = &CV_IMAGE_ELEM(image, uchar, i, j * 3);
ptr[0] = cvRound(ptr[0] * weight);
ptr[1] = cvRound(ptr[1] * weight);
ptr[2] = cvRound(ptr[2] * weight);
}
Mat src;Mat dst;
src = cvarrToMat(image);
cv::imwrite("test.png", src);
cvNamedWindow("test",1); imshow("test", src);
cvWaitKey();
return 0;
}
函数首先是展示wave这张照片,然后对图片进行处理展示处理后的图片并写到目录下为.png
(3)保存并编译并运行程序
$ g++ test.cpp -o test //pkg-config --cflags --libs opencv
编译cpp文件用g++ test.cpp -o test 编译生成可执行文件
pkg-config:
1、检查库的版本号,避免连接错误版本的库文件
2、获取编译预处理参数,如宏定义、头文件位置
3、获得链接参数,如库及以来的其它库位置,文件名及其它一些连接参数
4、自动加入所以来的其他库位置
而-cflags是用来指定程序再编译时需要的头文件所在目录
-libs是指定程序再链接时所需要的动态链接库的目录
以此来获取opencv的头文件与库文件
完成上述操作后,便可以开始运行程序了
$ ./test
二.运用opencv操控摄像头
1.首先要将虚拟机摄像头USB配置好
Win+R打开cmd 输入services.msc把虚拟机的USB服务打开
2.设置虚拟机
在虚拟机菜单栏中选择“虚拟机(M)”->选择“可移动设备”->选择“xxxx Camera”->选择“连接(断开与主机连接)”,设置完这项之后,虚拟机接管了笔记本摄像头。
观察虚拟机右下角,摄像头标志亮了
这时候输入查看是否有摄像头
$ ls /dev/video0
在虚拟机中输入以下命令进行打开摄像头查看
$ cheese
若没有安装可以进行安装
$ cheese
3.一个简单的打开摄像头显示处理视频的代码
创建一个cpp文件
$ touch main.cpp
进入编程
$ sudo gedit /main.cpp
输入下列代码
#include<opencv2/opencv.hpp>
using namespace cv;
int main()
{
//从摄像头读取视频
VideoCapture Capture(0);
//循环显示每一帧
while (1)
{ Mat frame;//定义一个Mat变量,用于存储每一的图像
Capture>>frame;//读取当前帧
imshow("读取视频帧", frame);//显示当前顿
waitKey(30);//延时30m
}
system("pause");
return 0;
}
编译然后运行
$ g++ /main1.cpp -o main1 `pkg-config --cflags --libs opencv`
$ ./main1
这样就能够开始录制视频了
四.总结
总的来说,这一章非常的有趣,学了这么久的编程终于开始接触到了图片识别和视频这些了,让我体验到了其中的乐趣,其中亲手一步步的操作更是熟悉了这些