30、Python数据可视化基础概述【用Python进行AI数据分析进阶教程】

用Python进行AI数据分析进阶教程30:

Python数据可视化基础概述


关键词:Python数据可视化、Matplotlib、Seaborn、Plotly、图表类型

摘要:本文概述了Python数据可视化的基础,强调其在快速理解数据、发现数据模式和趋势以及有效传递信息方面的重要性。文章介绍了三种常用的Python库:Matplotlib用于创建静态图表,具有高度的自定义能力;Seaborn基于Matplotlib构建,提供更高级的统计图表和美观样式;Plotly支持交互式图表,适用于Web应用和仪表盘开发。此外,还列举了几种基本图表类型及其应用场景,包括折线图、柱状图、散点图、饼图和箱线图,帮助读者选择合适的图表形式来表达数据背后的信息。

👉 欢迎订阅🔗
《用Python进行AI数据分析进阶教程》专栏
《AI大模型应用实践进阶教程》专栏
《Python编程知识集锦》专栏
《字节跳动旗下AI制作抖音视频》专栏
《智能辅助驾驶》专栏
《工具软件及IT技术集锦》专栏


Python 数据可视化是将数据以图形、图表等直观的形式呈现出来,帮助用户更清晰地理解数据的特征、模式和趋势。以下从重要性、常用库、基本图表类型等方面对 Python 数据可视化基础进行概述。

一、数据可视化的重要性

● 快速理解数据人类对图形的认知速度远快于对大量数字的分析。通过可视化,可以在短时间内掌握数据的整体特征,如分布情况、趋势走向等。

● 发现数据模式和趋势可视化有助于发现数据中的潜在模式、异常值和趋势,为数据分析和决策提供有力支持。

● 有效沟通信息在团队协作、项目汇报等场景中,可视化图表能够更直观地传达数据背后的信息,使不同背景的人都能轻松理解。

二、常用的 Python 数据可视化库

1、Matplotlib

● 简介Matplotlib 是 Python 中最基础、最常用的可视化库,它提供了类似 MATLAB 的绘图接口,功能强大且灵活,可用于创建各种类型的静态图表。

● 特点支持多种图形后端,可在不同环境中使用;可以自定义图表的各种元素,如颜色、线条样式、字体等。

● 示例代码(绘制折线图)

Python脚本

# 导入 matplotlib 库中的 pyplot 模块,pyplot 提供了一系列类似于 MATLAB 的绘图函数,
# 后续将使用这些函数来创建和定制图形,将其重命名为 plt 是为了方便后续代码调用。
import matplotlib.pyplot as plt
# 导入 numpy 库,numpy 是 Python 中用于科学计算的基础库,
# 提供了强大的多维数组对象和各种数学函数,
# 重命名为 np 是常见的约定,便于在代码中简洁地使用该库的功能。
import numpy as np

# 使用 numpy 的 linspace 函数生成一个包含 100 个元素的一维数组,
# 数组中的元素从 0 开始,到 10 结束,且元素之间是等间距分布的,
# 这个数组将作为后续绘制曲线时的 x 轴坐标数据。
x = np.linspace(0, 10, 100)
# 对数组 x 中的每个元素计算正弦值,得到一个新的数组 y,
# 该数组中的每个元素对应 x 数组中相同索引位置元素的正弦值,
# 这个数组将作为后续绘制曲线时的 y 轴坐标数据。
y = np.sin(x)

# 使用 plt.plot 函数绘制一条曲线,曲线的 x 轴坐标由数组 x 提供,y 轴坐标由数组 y 提供,
# 该函数会根据输入的 x 和 y 数据点,在图形中连接这些点形成一条曲线。
plt.plot(x, y)
# 使用 plt.title 函数为当前绘制的图形设置标题,标题内容为 'Sine Wave',
# 标题会显示在图形的上方,用于说明图形所表示的内容。
plt.title('Sine Wave')
# 使用 plt.xlabel 函数为图形的 x 轴设置标签,标签内容为 'X',
# 标签会显示在 x 轴下方,用于说明 x 轴所代表的含义。
plt.xlabel('X')
# 使用 plt.ylabel 函数为图形的 y 轴设置标签,标签内容为 'Y',
# 标签会显示在 y 轴左侧,用于说明 y 轴所代表的含义。
plt.ylabel('Y')
# 使用 plt.show 函数显示当前已经创建和设置好的图形,
# 调用该函数后,会弹出一个窗口将绘制好的图形展示出来。
plt.show()

打印输出结果注释

这段代码本身不会在控制台打印文本信息。运行代码后,matplotlib 会弹出一个图形窗口,窗口中展示了一个正弦波曲线。

● 曲线该曲线表示正弦函数 y=sin(x) 在区间 [0,10] 上的图像。

● 标题图形的上方显示标题 Sine Wave,表明该图形是正弦波的可视化。

● 坐标轴标签x 轴下方显示标签 X,y 轴左侧显示标签 Y,分别表示坐标轴所代表的变量。

2、Seaborn

● 简介Seaborn 是基于 Matplotlib 构建的高级可视化库,它提供了更简洁的 API 和美观的默认样式,专注于统计图表的绘制。

● 特点内置了多种统计图表类型,如箱线图、小提琴图、热力图等;可以方便地对数据进行分组和比较。

● 示例代码(绘制箱线图)

Python脚本

# 导入 seaborn 库,seaborn 是基于 matplotlib 的统计数据可视化库,
# 它提供了更高级的接口和美观的默认样式,方便创建各种统计图表,
# 这里将其重命名为 sns 以便后续使用。
import seaborn as sns
# 导入 matplotlib 库的 pyplot 模块,pyplot 提供了类似 MATLAB 的绘图接口,
# 可用于创建和定制图形,将其重命名为 plt 是常见的做法,方便后续代码调用。
import matplotlib.pyplot as plt
# 导入 pandas 库,pandas 是用于数据处理和分析的强大库,
# 提供了 DataFrame 等数据结构,便于处理和操作结构化数据,这里将其重命名为 pd 方便使用。
import pandas as pd

# 使用 pandas 的 DataFrame 函数创建一个二维表格数据结构,
# 这里传入一个字典,字典的键 'A' 和 'B' 作为列名,对应的值列表 [1, 2, 3, 4, 5] 和 [2, 4, 6, 8, 10] 作为列的数据,
# 这个 DataFrame 数据将作为后续绘制箱线图的数据源。
data = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [2, 4, 6, 8, 10]})
# 使用 seaborn 的 boxplot 函数绘制箱线图,
# 传入的参数 data=data 表示使用上面创建的 DataFrame 数据作为绘图数据,
# 箱线图可以展示数据的分布情况,包括中位数、四分位数、异常值等信息。
sns.boxplot(data=data)
# 使用 matplotlib 的 show 函数显示当前已经创建和设置好的图形,
# 调用该函数后,会弹出一个窗口将绘制好的箱线图展示出来。
plt.show()

打印输出结果注释

这段代码本身不会在控制台打印文本信息。运行代码后,matplotlib 会弹出一个图形窗口,窗口中展示了两个箱线图,分别对应 DataFrame 中的两列数据(列 A 和列 B)。

● 箱线图每个箱线图由箱体、须线和可能存在的异常值点组成。

○ 箱体箱体的上下边界分别表示数据的上四分位数(Q3​)和下四分位数(Q1​),箱体中间的线表示中位数(Q2​)。

○ 须线须线从箱体延伸出去,通常表示数据的取值范围,但具体计算方式可能因不同的规则有所差异。

○ 异常值如果数据中存在远离主体数据的异常值,会以单独的点形式显示在须线之外。

● 列 A 的箱线图对应数据 [1, 2, 3, 4, 5],展示这组数据的分布特征。

● 列 B 的箱线图对应数据 [2, 4, 6, 8, 10],展示这组数据的分布特征。

通过观察箱线图,可以快速比较两列数据的集中趋势、离散程度等分布情况。

3、Plotly

● 简介Plotly 是一个交互式可视化库,支持 Python、R、JavaScript 等多种编程语言。它可以创建高质量的交互式图表,适用于 Web 应用和数据仪表盘。

● 特点生成的图表具有交互性,用户可以通过鼠标悬停、缩放、拖动等操作查看数据细节;支持多种图表类型,包括 3D 图表。

● 示例代码(绘制散点图)

Python脚本

# 导入 plotly.express 库并将其重命名为 px。
# plotly.express 是 Plotly 库中用于快速创建交互式可视化图表的高级接口,
# 它提供了简洁的 API 来创建各种类型的图表,如散点图、折线图、柱状图等。
import plotly.express as px
# 导入 pandas 库并将其重命名为 pd。
# pandas 是一个强大的数据处理和分析库,它提供了 DataFrame 等数据结构,
# 方便对结构化数据进行读取、处理和转换。
import pandas as pd

# 使用 pandas 的 DataFrame 函数创建一个数据框对象。
# 这里传入一个字典,字典的键 'x' 和 'y' 分别作为数据框的列名,
# 对应的值列表 [1, 2, 3, 4, 5] 和 [2, 4, 6, 8, 10] 作为每列的数据。
# 这个数据框将作为后续绘制散点图的数据源。
data = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]})
# 使用 plotly.express 的 scatter 函数创建一个散点图对象。
# 参数 data 传入之前创建的数据框,指定使用该数据框中的数据进行绘图。
# x='x' 表示使用数据框中 'x' 列的数据作为散点图的 x 轴坐标。
# y='y' 表示使用数据框中 'y' 列的数据作为散点图的 y 轴坐标。
# 该函数返回一个 Figure 对象,存储了散点图的相关信息。
fig = px.scatter(data, x='x', y='y')
# 调用 Figure 对象的 show 方法来显示散点图。
# 运行此代码后,会在默认的浏览器中打开一个新的页面,展示创建好的交互式散点图。
fig.show()

打印输出结果注释

这段代码本身不会在控制台输出文本信息。运行代码后,会在默认浏览器中打开一个新页面,显示一个交互式的散点图。

● 散点图内容:在散点图中,会有 5 个数据点,这些点的坐标分别为 (1, 2)(2, 4)(3, 6)(4, 8) 和 (5, 10)。这些点清晰地展示了 x 和 y 之间的线性关系,因为 y 的值恰好是 x 值的 2 倍。

● 交互功能:由于使用了 Plotly 库,这个散点图具有交互性。用户可以通过鼠标进行以下操作:

○ 悬停:将鼠标悬停在某个数据点上时,会显示该点的具体坐标信息(x 和 y 的值)。

○ 缩放:可以使用鼠标滚轮进行缩放操作,放大或缩小散点图的显示范围,以便更清晰地查看数据点的细节。

○ 拖动:按住鼠标左键拖动,可以平移散点图,查看不同区域的数据。

三、基本图表类型

1、折线图(Line Chart)

● 用途用于展示数据随时间或其他连续变量的变化趋势。

● 示例场景股票价格走势、气温变化等。

2、柱状图(Bar Chart)

● 用途用于比较不同类别之间的数据大小。

● 示例场景不同产品的销售额、不同城市的人口数量等。

3、散点图(Scatter Plot)

● 用途用于展示两个变量之间的关系,判断数据点的分布情况。

● 示例场景身高与体重的关系、学生成绩与学习时间的关系等。

4、饼图(Pie Chart)

● 用途用于展示各部分占总体的比例关系。

● 示例场景不同年龄段人口占总人口的比例、不同产品销售额占总销售额的比例等。

5、箱线图(Box Plot)

● 用途用于展示数据的分布情况,包括中位数、四分位数、异常值等。

● 示例场景学生考试成绩的分布、不同地区房价的分布等。

——The END——


🔗 欢迎订阅专栏

序号专栏名称说明
1用Python进行AI数据分析进阶教程《用Python进行AI数据分析进阶教程》专栏
2AI大模型应用实践进阶教程《AI大模型应用实践进阶教程》专栏
3Python编程知识集锦《Python编程知识集锦》专栏
4字节跳动旗下AI制作抖音视频《字节跳动旗下AI制作抖音视频》专栏
5智能辅助驾驶《智能辅助驾驶》专栏
6工具软件及IT技术集锦《工具软件及IT技术集锦》专栏

👉 关注我 @理工男大辉郎 获取实时更新

欢迎关注、收藏或转发。
敬请关注 我的
微信搜索公众号:cnFuJH
CSDN博客:理工男大辉郎
抖音号:31580422589

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理工男大辉郎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值