一、简单排序算法(O (n²) 复杂度)
适用于小规模数据(n<10³),实现简单但效率较低。
1. 冒泡排序(Bubble Sort)
- 原理:相邻元素比较,逆序时交换,每轮将最大元素 “冒泡” 到末尾。
- 代码示例:
void bubbleSort(int arr[], int n) { for (int i = 0; i < n-1; ++i) { for (int j = 0; j < n-i-1; ++j) { if (arr[j] > arr[j+1]) swap(arr[j], arr[j+1]); } } }
- 特点:
- 稳定排序(不改变相同元素相对顺序)。
- 最好情况 O (n)(已有序时可提前终止),最坏 / 平均 O (n²)。
- 竞赛场景:几乎不用,仅作为算法入门练习。
2. 插入排序(Insertion Sort)
- 原理:将元素逐个插入已排序区间,类似扑克牌整理。
- 代码示例:
void insertionSort(int arr[], int n) { for (int i = 1; i < n; ++i) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j+1] = arr[j]; j--; } arr[j+1] = key; } }
- 特点:
- 稳定排序。
- 最好情况 O (n),最坏 / 平均 O (n²)。
- 优化:用二分查找确定插入位置(二分插入排序),但时间复杂度仍为 O (n²)。
- 竞赛场景:小规模数据或部分有序数据(如链表排序)。
3. 选择排序(Selection Sort)
- 原理:每轮选择未排序部分的最小元素,与未排序起点交换。
- 代码示例:
void selectionSort(int arr[], int n) { for (int i = 0; i < n-1; ++i) { int min_idx = i; for (int j = i+1; j < n; ++j) { if (arr[j] < arr[min_idx]) min_idx = j; } swap(arr[i], arr[min_idx]); } }
- 特点:
- 不稳定排序(如序列 [5, 5, 3] 排序后相同元素顺序可能改变)。
- 无论是否有序,均需 O (n²) 时间(无优化空间)。
- 竞赛场景:极少使用,仅用于理解选择思想。
二、进阶排序算法(O (n log n) 复杂度)
适用于大规模数据(n≥10³),是竞赛核心内容。
4. 快速排序(Quick Sort)
- 原理:分治算法,选基准值(pivot),将数组划分为小于、等于、大于基准的三部分,递归排序。
- 代码示例(单基准版):
void quickSort(int arr[], int low, int high) { if (low < high) { int pivot = arr[high]; // 选最后一个元素为基准 int i = low - 1; for (int j = low; j < high; ++j) { if (arr[j] <= pivot) { i++; swap(arr[i], arr[j]); } } swap(arr[i+1], arr[high]); quickSort(arr, low, i); quickSort(arr, i+2, high); } }
- 特点:
- 不稳定排序。
- 平均时间 O (n log n),最坏 O (n²)(可通过随机化基准或三数取中法优化)。
- 原地排序(空间 O (log n) 栈空间),效率高,是实际应用中最常用的排序算法之一。
- 竞赛场景:需手动实现时使用,注意处理边界情况(如大量重复元素)。
5. 归并排序(Merge Sort)
- 原理:分治算法,递归将数组分成两半,排序后合并(merge)。
- 代码示例(递归版):
void merge(int arr[], int l, int m, int r) { int n1 = m - l + 1, n2 = r - m; int L[n1], R[n2]; for (int i = 0; i < n1; ++i) L[i] = arr[l+i]; for (int j = 0; j < n2; ++j) R[j] = arr[m+1+j]; int i=0, j=0, k=l; while (i < n1 && j < n2) { arr[k++] = (L[i] <= R[j]) ? L[i++] : R[j++]; } while (i < n1) arr[k++] = L[i++]; while (j < n2) arr[k++] = L[j++]; } void mergeSort(int arr[], int l, int r) { if (l < r) { int m = l + (r - l)/2; mergeSort(arr, l, m); mergeSort(arr, m+1, r); merge(arr, l, m, r); } }
- 特点:
- 稳定排序。
- 时间复杂度稳定 O (n log n),空间 O (n)(需额外数组存储临时合并结果)。
- 竞赛场景:适用于需要稳定排序或外排序(处理大文件)的场景,如归并树、逆序对统计等。
6. 堆排序(Heap Sort)
- 原理:利用堆结构(大根堆或小根堆),每次取出堆顶元素(最大 / 最小值),重建堆后重复操作。
- 步骤:
- 构建大根堆(数组下标从 0 开始)。
- 将堆顶(arr [0])与末尾元素交换,缩小堆范围,调整堆结构。
- 重复直到堆空。
- 特点:
- 不稳定排序。
- 时间 O (n log n),空间 O (1)(原地排序,仅需常数额外空间)。
- 竞赛场景:适用于空间受限的情况,如操作系统内存管理,但实际竞赛中较少手动实现(可直接用 STL 优先队列)。
三、线性时间排序算法(非比较排序)
利用数据特性(如范围、位数)实现 O (n) 或 O (n+k) 复杂度,仅适用于特定数据类型。
7. 计数排序(Counting Sort)
- 原理:统计每个值的出现次数,按次数重建数组。
- 条件:数据范围有限(如已知最大值 max_val)。
- 代码示例:
void countingSort(int arr[], int n, int max_val) { vector<int> count(max_val+1, 0); for (int i=0; i<n; ++i) count[arr[i]]++; for (int i=1; i<=max_val; ++i) count[i] += count[i-1]; // 前缀和(确定元素位置) vector<int> output(n); for (int i=n-1; i>=0; --i) { // 稳定排序需从后往前遍历 output[count[arr[i]]-1] = arr[i]; count[arr[i]]--; } copy(output.begin(), output.end(), arr); // 复制回原数组 }
- 特点:
- 稳定排序。
- 时间 O (n + k)(k 为数据范围),空间 O (n + k)。
- 竞赛场景:处理整数且范围较小时(如 CSP-J 的 “推销员” 问题中排序分数)。
8. 基数排序(Radix Sort)
- 原理:按低位到高位(LSD)或高位到低位(MSD)依次排序,每次按某一位分组。
- 条件:数据为整数,且位数可分解(如十进制、二进制)。
- 示例:对数组按个位→十位→百位排序,每次用计数排序或桶排序。
- 特点:
- 稳定排序(取决于每轮排序的稳定性)。
- 时间 O (d (n + k)),d 为位数,k 为每一位的可能取值数(如十进制 k=10)。
- 竞赛场景:处理长整数或字符串排序(如 CSP-S 的 “交通规划” 中按编号排序)。
9. 桶排序(Bucket Sort)
- 原理:将数据分到有限个桶中,每个桶内单独排序,最后合并。
- 条件:数据分布均匀,可划分合理桶区间。
- 特点:
- 时间复杂度平均 O (n + m*(n/m log n/m)) = O (n log n)(m 为桶数),最坏仍可能退化为 O (n²)。
- 竞赛场景:处理浮点数或分布均匀的整数(如 NOI 的 “冗余路径” 问题)。
四、C++ 标准库排序:std::sort
- 实现:基于快速排序的优化版本(Introsort,内省排序),结合堆排序和插入排序。
- 特点:
- 自动处理递归深度,避免栈溢出。
- 对小规模数据(n<16)使用插入排序,提高常数效率。
- 不稳定排序,但可通过自定义结构体的
operator<
或传入比较函数实现复杂排序。
- 用法:
#include <algorithm> vector<int> arr = {3, 1, 4, 1, 5, 9}; sort(arr.begin(), arr.end()); // 升序排序 sort(arr.begin(), arr.end(), greater<int>()); // 降序排序 // 结构体排序(按年龄升序,姓名字典序降序) struct Student { string name; int age; }; bool cmp(Student a, Student b) { return a.age != b.age ? a.age < b.age : a.name > b.name; } sort(students.begin(), students.end(), cmp);
- 竞赛建议:
- 优先使用
std::sort
,其效率远超手动实现的排序算法。 - 若需稳定排序,可先用
std::stable_sort
(基于归并排序,时间 O (n log n),空间 O (n))。
- 优先使用
五、算法对比与选择指南
算法 | 时间复杂度 | 空间复杂度 | 稳定性 | 适用场景 |
---|---|---|---|---|
冒泡 / 插入 / 选择 | O(n²) | O(1) | 插入稳定 | n<10³,简单场景 |
快速排序 | 平均 O (n log n) | O(log n) | 不稳定 | 大规模通用排序(首选std::sort ) |
归并排序 | O(n log n) | O(n) | 稳定 | 需要稳定排序或外排序 |
堆排序 | O(n log n) | O(1) | 不稳定 | 空间受限或需要堆结构 |
计数 / 基数排序 | O(n + k) | O(n + k) | 稳定 | 整数且范围 / 位数有限 |
竞赛实战建议:
- 小规模数据:直接用插入排序或
std::sort
(效率足够)。 - 大规模通用排序:无脑用
std::sort
,搭配自定义比较函数。 - 特殊数据(如 0-1000 的整数):用计数排序优化常数。
- 需稳定排序:用
std::stable_sort
或归并排序。
六、竞赛常见问题与优化
-
快速排序的最坏情况:
- 数据完全有序时,普通快排退化为 O (n²),可通过随机化基准(
random_shuffle
)或三数取中法(选头、中、尾的中位数作为基准)避免。
- 数据完全有序时,普通快排退化为 O (n²),可通过随机化基准(
-
排序与自定义类型:
- 对结构体排序时,优先重载
operator<
或使用 Lambda 表达式作为比较函数,确保逻辑正确(如避免浮点精度问题)。
- 对结构体排序时,优先重载
-
稳定性的应用:
- 当排序关键字相同时需保留原顺序(如 “填数游戏” 中按分数排序后保持输入顺序),必须使用稳定排序算法。
通过理解不同算法的特性,结合题目数据范围和要求,可在竞赛中高效选择排序方案。建议熟练掌握std::sort
的用法,并能快速实现归并排序、计数排序等特定场景算法