动~~~~~态de规划——c++中的的动态规划

动态规划(Dynamic Programming, DP)是一种通过将复杂问题分解为重叠子问题,并存储子问题解以避免重复计算的高效算法设计方法。在 C++ 中,动态规划凭借其空间和时间上的优化特性,被广泛应用于各类问题求解。

一、动态规划的核心思想

动态规划的有效性基于两个关键性质:

  1. 最优子结构:问题的最优解包含子问题的最优解
  2. 重叠子问题:子问题会被重复计算多次

其核心思想是 "记忆化",即通过存储中间结果来避免重复计算,通常有两种实现方式:

  • 自顶向下(记忆化搜索):递归 + 缓存
  • 自底向上(递推):迭代 + 表格
二、动态规划的基本步骤
  1. 定义状态(通常用dp[i]表示与前i个元素相关的解)
  2. 推导状态转移方程
  3. 确定初始条件
  4. 规划计算顺序(自底向上时)
  5. 提取最终结果
三、C++ 中动态规划的经典实现

下面通过几个经典案例展示 C++ 动态规划的实现:

1. 斐波那契数列(Fibonacci)

问题:计算第 n 个斐波那契数
状态定义dp[i]表示第 i 个斐波那契数
状态转移dp[i] = dp[i-1] + dp[i-2]
初始条件dp[0]=0, dp[1]=1

cpp

// 方法1:朴素递归(时间复杂度O(2^n),存在大量重复计算)
long long fibRecursive(int n) {
    if (n <= 1) return n;
    return fibRecursive(n-1) + fibRecursive(n-2);
}

// 方法2:记忆化搜索(自顶向下,时间复杂度O(n))
long long fibMemo(int n, vector<long long>& memo) {
    if (n <= 1) return n;
    // 若已计算过,直接返回缓存结果
    if (memo[n] != -1) return memo[n];
    return memo[n] = fibMemo(n-1, memo) + fibMemo(n-2, memo);
}

// 方法3:递推(自底向上,时间复杂度O(n),空间复杂度O(n))
long long fibDP(int n) {
    if (n <= 1) return n;
    vector<long long> dp(n+1);
    dp[0] = 0;
    dp[1] = 1;
    for (int i = 2; i <= n; i++) {
        dp[i] = dp[i-1] + dp[i-2];
    }
    return dp[n];
}

// 方法4:空间优化递推(空间复杂度O(1))
long long fibDPOptimized(int n) {
    if (n <= 1) return n;
    long long a = 0, b = 1, c;
    for (int i = 2; i <= n; i++) {
        c = a + b;
        a = b;
        b = c;
    }
    return b;
}
2. 背包问题(0-1 Knapsack)

问题:有 n 个物品,每个物品有重量w[i]和价值v[i],背包容量为 W,求能装入的最大价值
状态定义dp[i][j]表示前 i 个物品放入容量为 j 的背包的最大价值
状态转移dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1])(选或不选第 i 个物品)
初始条件dp[0][j]=0, dp[i][0]=0

cpp

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

// 二维数组实现(时间复杂度O(n*W),空间复杂度O(n*W))
int knapsack2D(vector<int>& weights, vector<int>& values, int W) {
    int n = weights.size();
    vector<vector<int>> dp(n+1, vector<int>(W+1, 0));
    
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= W; j++) {
            if (weights[i-1] <= j) { // 能装入第i个物品
                // 不选第i个物品 vs 选第i个物品
                dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1]);
            } else { // 不能装入第i个物品
                dp[i][j] = dp[i-1][j];
            }
        }
    }
    return dp[n][W];
}

// 一维数组优化(空间复杂度O(W))
int knapsack1D(vector<int>& weights, vector<int>& values, int W) {
    int n = weights.size();
    vector<int> dp(W+1, 0);
    
    for (int i = 0; i < n; i++) {
        // 逆序遍历避免重复使用当前物品
        for (int j = W; j >= weights[i]; j--) {
            dp[j] = max(dp[j], dp[j-weights[i]] + values[i]);
        }
    }
    return dp[W];
}

int main() {
    vector<int> weights = {2, 3, 4, 5};
    vector<int> values = {3, 4, 5, 6};
    int W = 8;
    cout << "二维DP最大价值: " << knapsack2D(weights, values, W) << endl;
    cout << "一维DP最大价值: " << knapsack1D(weights, values, W) << endl;
    return 0;
}
3. 最长公共子序列(LCS)

问题:求两个字符串的最长公共子序列长度
状态定义dp[i][j]表示字符串 A 前 i 个字符和字符串 B 前 j 个字符的 LCS 长度
状态转移

  • A[i-1] == B[j-1],则dp[i][j] = dp[i-1][j-1] + 1
  • 否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
    初始条件dp[0][j]=0, dp[i][0]=0

cpp

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;

// 二维数组实现
int lcs(string& text1, string& text2) {
    int m = text1.length();
    int n = text2.length();
    vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
    
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            if (text1[i-1] == text2[j-1]) {
                dp[i][j] = dp[i-1][j-1] + 1;
            } else {
                dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
    }
    return dp[m][n];
}

// 打印LCS具体内容
string printLCS(string& text1, string& text2) {
    int m = text1.length();
    int n = text2.length();
    vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
    
    // 计算DP表
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            if (text1[i-1] == text2[j-1]) {
                dp[i][j] = dp[i-1][j-1] + 1;
            } else {
                dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
    }
    
    // 回溯构建LCS
    string lcs;
    int i = m, j = n;
    while (i > 0 && j > 0) {
        if (text1[i-1] == text2[j-1]) {
            lcs += text1[i-1];
            i--; j--;
        } else if (dp[i-1][j] > dp[i][j-1]) {
            i--;
        } else {
            j--;
        }
    }
    reverse(lcs.begin(), lcs.end()); // 反转得到正确顺序
    return lcs;
}

int main() {
    string text1 = "ABCBDAB";
    string text2 = "BDCAB";
    cout << "LCS长度: " << lcs(text1, text2) << endl;
    cout << "LCS内容: " << printLCS(text1, text2) << endl;
    return 0;
}
四、动态规划的优化技巧
  1. 空间优化

    • 使用一维数组替代二维数组(如 0-1 背包的一维优化)
    • 仅保留必要的历史状态(如斐波那契数列的 O (1) 空间解法)
  2. 状态定义优化

    • 重新定义更简洁的状态(如将二维状态压缩为一维)
    • 引入辅助状态简化转移方程
  3. 递推顺序优化

    • 合理规划计算顺序,确保状态转移时依赖的子问题已求解
    • 利用分治思想减少重复计算(如矩阵快速幂优化线性 DP)
五、动态规划的典型应用场景
  • 字符串处理:编辑距离、最长回文子串、正则表达式匹配
  • 数组问题:最大子序和、打家劫舍、跳跃游戏
  • 组合数学:不同路径、整数划分、子集和问题
  • 图论问题:最短路径(如 Floyd-Warshall 算法)、旅行商问题
  • 博弈论:石子游戏、Nim 游戏变种
六、动态规划与其他算法的对比
算法类型核心思想时间复杂度适用场景
动态规划记忆化子问题解通常 O (n²)~O (n³)有重叠子问题和最优子结构
贪心算法局部最优推全局最优通常 O (n log n)无后效性的问题
分治算法分解为独立子问题通常 O (n log n)子问题相互独立
回溯算法穷举所有可能解通常 O (2ⁿ)解空间为树状结构的问题
七、C++ 动态规划的实战建议
  1. 从小问题入手:先解决简单案例,再逐步扩展
  2. 绘制 DP 表:手动推导前几个状态,验证状态转移的正确性
  3. 注意数据类型:使用long long避免整数溢出(如大数斐波那契)
  4. 测试边界条件:如 n=0、n=1、容量为 0 等特殊情况
  5. 优化空间:先实现完整逻辑,再考虑空间压缩
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值