动态规划(Dynamic Programming, DP)是一种通过将复杂问题分解为重叠子问题,并存储子问题解以避免重复计算的高效算法设计方法。在 C++ 中,动态规划凭借其空间和时间上的优化特性,被广泛应用于各类问题求解。
一、动态规划的核心思想
动态规划的有效性基于两个关键性质:
- 最优子结构:问题的最优解包含子问题的最优解
- 重叠子问题:子问题会被重复计算多次
其核心思想是 "记忆化",即通过存储中间结果来避免重复计算,通常有两种实现方式:
- 自顶向下(记忆化搜索):递归 + 缓存
- 自底向上(递推):迭代 + 表格
二、动态规划的基本步骤
- 定义状态(通常用
dp[i]
表示与前i
个元素相关的解) - 推导状态转移方程
- 确定初始条件
- 规划计算顺序(自底向上时)
- 提取最终结果
三、C++ 中动态规划的经典实现
下面通过几个经典案例展示 C++ 动态规划的实现:
1. 斐波那契数列(Fibonacci)
问题:计算第 n 个斐波那契数
状态定义:dp[i]
表示第 i 个斐波那契数
状态转移:dp[i] = dp[i-1] + dp[i-2]
初始条件:dp[0]=0, dp[1]=1
cpp
// 方法1:朴素递归(时间复杂度O(2^n),存在大量重复计算)
long long fibRecursive(int n) {
if (n <= 1) return n;
return fibRecursive(n-1) + fibRecursive(n-2);
}
// 方法2:记忆化搜索(自顶向下,时间复杂度O(n))
long long fibMemo(int n, vector<long long>& memo) {
if (n <= 1) return n;
// 若已计算过,直接返回缓存结果
if (memo[n] != -1) return memo[n];
return memo[n] = fibMemo(n-1, memo) + fibMemo(n-2, memo);
}
// 方法3:递推(自底向上,时间复杂度O(n),空间复杂度O(n))
long long fibDP(int n) {
if (n <= 1) return n;
vector<long long> dp(n+1);
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
// 方法4:空间优化递推(空间复杂度O(1))
long long fibDPOptimized(int n) {
if (n <= 1) return n;
long long a = 0, b = 1, c;
for (int i = 2; i <= n; i++) {
c = a + b;
a = b;
b = c;
}
return b;
}
2. 背包问题(0-1 Knapsack)
问题:有 n 个物品,每个物品有重量w[i]
和价值v[i]
,背包容量为 W,求能装入的最大价值
状态定义:dp[i][j]
表示前 i 个物品放入容量为 j 的背包的最大价值
状态转移:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1])
(选或不选第 i 个物品)
初始条件:dp[0][j]=0, dp[i][0]=0
cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 二维数组实现(时间复杂度O(n*W),空间复杂度O(n*W))
int knapsack2D(vector<int>& weights, vector<int>& values, int W) {
int n = weights.size();
vector<vector<int>> dp(n+1, vector<int>(W+1, 0));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= W; j++) {
if (weights[i-1] <= j) { // 能装入第i个物品
// 不选第i个物品 vs 选第i个物品
dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1]);
} else { // 不能装入第i个物品
dp[i][j] = dp[i-1][j];
}
}
}
return dp[n][W];
}
// 一维数组优化(空间复杂度O(W))
int knapsack1D(vector<int>& weights, vector<int>& values, int W) {
int n = weights.size();
vector<int> dp(W+1, 0);
for (int i = 0; i < n; i++) {
// 逆序遍历避免重复使用当前物品
for (int j = W; j >= weights[i]; j--) {
dp[j] = max(dp[j], dp[j-weights[i]] + values[i]);
}
}
return dp[W];
}
int main() {
vector<int> weights = {2, 3, 4, 5};
vector<int> values = {3, 4, 5, 6};
int W = 8;
cout << "二维DP最大价值: " << knapsack2D(weights, values, W) << endl;
cout << "一维DP最大价值: " << knapsack1D(weights, values, W) << endl;
return 0;
}
3. 最长公共子序列(LCS)
问题:求两个字符串的最长公共子序列长度
状态定义:dp[i][j]
表示字符串 A 前 i 个字符和字符串 B 前 j 个字符的 LCS 长度
状态转移:
- 若
A[i-1] == B[j-1]
,则dp[i][j] = dp[i-1][j-1] + 1
- 否则,
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
初始条件:dp[0][j]=0, dp[i][0]=0
cpp
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
// 二维数组实现
int lcs(string& text1, string& text2) {
int m = text1.length();
int n = text2.length();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (text1[i-1] == text2[j-1]) {
dp[i][j] = dp[i-1][j-1] + 1;
} else {
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
}
return dp[m][n];
}
// 打印LCS具体内容
string printLCS(string& text1, string& text2) {
int m = text1.length();
int n = text2.length();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
// 计算DP表
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (text1[i-1] == text2[j-1]) {
dp[i][j] = dp[i-1][j-1] + 1;
} else {
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
}
// 回溯构建LCS
string lcs;
int i = m, j = n;
while (i > 0 && j > 0) {
if (text1[i-1] == text2[j-1]) {
lcs += text1[i-1];
i--; j--;
} else if (dp[i-1][j] > dp[i][j-1]) {
i--;
} else {
j--;
}
}
reverse(lcs.begin(), lcs.end()); // 反转得到正确顺序
return lcs;
}
int main() {
string text1 = "ABCBDAB";
string text2 = "BDCAB";
cout << "LCS长度: " << lcs(text1, text2) << endl;
cout << "LCS内容: " << printLCS(text1, text2) << endl;
return 0;
}
四、动态规划的优化技巧
-
空间优化
- 使用一维数组替代二维数组(如 0-1 背包的一维优化)
- 仅保留必要的历史状态(如斐波那契数列的 O (1) 空间解法)
-
状态定义优化
- 重新定义更简洁的状态(如将二维状态压缩为一维)
- 引入辅助状态简化转移方程
-
递推顺序优化
- 合理规划计算顺序,确保状态转移时依赖的子问题已求解
- 利用分治思想减少重复计算(如矩阵快速幂优化线性 DP)
五、动态规划的典型应用场景
- 字符串处理:编辑距离、最长回文子串、正则表达式匹配
- 数组问题:最大子序和、打家劫舍、跳跃游戏
- 组合数学:不同路径、整数划分、子集和问题
- 图论问题:最短路径(如 Floyd-Warshall 算法)、旅行商问题
- 博弈论:石子游戏、Nim 游戏变种
六、动态规划与其他算法的对比
算法类型 | 核心思想 | 时间复杂度 | 适用场景 |
---|---|---|---|
动态规划 | 记忆化子问题解 | 通常 O (n²)~O (n³) | 有重叠子问题和最优子结构 |
贪心算法 | 局部最优推全局最优 | 通常 O (n log n) | 无后效性的问题 |
分治算法 | 分解为独立子问题 | 通常 O (n log n) | 子问题相互独立 |
回溯算法 | 穷举所有可能解 | 通常 O (2ⁿ) | 解空间为树状结构的问题 |
七、C++ 动态规划的实战建议
- 从小问题入手:先解决简单案例,再逐步扩展
- 绘制 DP 表:手动推导前几个状态,验证状态转移的正确性
- 注意数据类型:使用
long long
避免整数溢出(如大数斐波那契) - 测试边界条件:如 n=0、n=1、容量为 0 等特殊情况
- 优化空间:先实现完整逻辑,再考虑空间压缩