人人都说kafka,何为kafka???三分钟kafka原理详解~

一、什么是kafka???

1.1 定义

Kafka 是一个分布式的基于发布 / 订阅模式的消息队列(Message Queue),主要应用于大数据实时处理领域。

1.2 消息队列

1.2.1传统消息队列的应用场景

好处:

  1. 解耦

    允许独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

  2. 可恢复性

    系统的一部分组件失效时,不会影响整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

    缓冲

    有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

    灵活性和峰值处理能力

    使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

    异步通信

    很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

1.2.2 kafka消息队列的两种形式

点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除。)

消息生产者生产消息发送到 Queue 中,然后消费者从 Queue 中取出并且消费消息。消息被消费以后,Queue 中不再有存储,所以消费者不可能消费到已经被消费的消息。Queue 支持存在多个消费者,但对于一个消息而言,只有一个消费者可以消费。 img

发布 / 订阅模式(一对多,消费者消费数据之后不会清除消息)

消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 中的消息会被所有订阅者消费。

img

1.3 Kafka 基础架构

img

Producer:

消息生产者,就是向 Kafka broker 发消息的客户端。

Consumer:

消息消费者,向 Kafka broker 取消息的客户端。

Consumer Group(CG):

消费者组,由多个 Consumer 组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

Broker:

一台 Kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。

Topic:

可以理解为一个队列,生产者和消费者面向的都是一个 topic。

Partiton:

为了实现拓展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分为多个 Partition,每个 partition 都是一个有序的队列。

Replication:

副本,为保证集群中某个节点发生故障时,该节点上的 partition 数据不丢失,且 Kafka 仍然可以继续工作,Kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。

leader:

每个分区多个副本的 ” 主 “,生产者发送数据的对象,以及消费者消费数据时的对象都是 leader。

follower:

每个分区多个副本的 “从”,实时从 leader 中同步数据,保持和 leader 数据的同步。leader 发生故障时,某个 follower 会成为新的 leader。

二、KafKa部署

部署教程请移步:kafka 本地 windos部署详细教学,轻松使用本地kafka进行消息推送接收!-CSDN博客

三、kafka架构深入理解

3.1 Kafka 工作流程

3.1.1 写入方式

producer采用推(push)模式将消息发布到broker,每条消息都被追加(append)到分区(patition)中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障kafka吞吐率)。

3.1.2 分区(Partition)

Kafka集群有多个消息代理服务器(broker-server)组成,发布到Kafka集群的每条消息都有一个类别,用主题(topic)来表示。通常,不同应用产生不同类型的数据,可以设置不同的主题。一个主题一般会有多个消息的订阅者,当生产者发布消息到某个主题时,订阅了这个主题的消费者都可以接收到生成者写入的新消息。

afka集群为每个主题维护了分布式的分区(partition)日志文件,物理意义上可以把主题(topic)看作进行了分区的日志文件(partition log)。主题的每个分区都是一个有序的、不可变的记录序列,新的消息会不断追加到日志中。分区中的每条消息都会按照时间顺序分配到一个单调递增的顺序编号,叫做偏移量(offset),这个偏移量能够唯一地定位当前分区中的每一条消息。

消息发送时都被发送到一个topic,其本质就是一个目录,而topic是由一些Partition Logs(分区日志)组成,其组织结构如下图所示:

下图中的topic有3个分区,每个分区的偏移量都从0开始,不同分区之间的偏移量都是独立的,不会相互影响。 img

img

我们可以看到,每个Partition中的消息都是有序的,生产的消息被不断追加到Partition log上,其中的每一个消息都被赋予了一个唯一的offset值。发布到Kafka主题的每条消息包括键值和时间戳。消息到达服务器端的指定分区后,都会分配到一个自增的偏移量。原始的消息内容和分配的偏移量以及其他一些元数据信息最后都会存储到分区日志文件中。消息的键也可以不用设置,这种情况下消息会均衡地分布到不同的分区。

3.3 Kafka 生产者

在 Kafka 中,我们把产生消息的那一方称为生产者,比如我们经常回去淘宝购物,你打开淘宝的那一刻,你的登陆信息,登陆次数都会作为消息传输到 Kafka 后台,当你浏览购物的时候,你的浏览信息,你的搜索指数,你的购物爱好都会作为一个个消息传递给 Kafka 后台,然后淘宝会根据你的爱好做智能推荐,致使你的钱包从来都禁不住诱惑,那么这些生产者产生的消息是怎么传到 Kafka 应用程序的呢?发送过程是怎么样的呢?

尽管消息的产生非常简单,但是消息的发送过程还是比较复杂的 我们从创建一个ProducerRecord 对象开始,ProducerRecord 是 Kafka 中的一个核心类,它代表了一组 Kafka 需要发送的 key/value 键值对,它由记录要发送到的主题名称(Topic Name),可选的分区号(Partition Number)以及可选的键值对构成。 在发送 ProducerRecord 时,我们需要将键值对对象由序列化器转换为字节数组,这样它们才能够在网络上传输。然后消息到达了分区器。

如果发送过程中指定了有效的分区号,那么在发送记录时将使用该分区。如果发送过程中未指定分区,则将使用key 的 hash 函数映射指定一个分区。如果发送的过程中既没有分区号也没有,则将以循环的方式分配一个分区。选好分区后,生产者就知道向哪个主题和分区发送数据了。

ProducerRecord 还有关联的时间戳,如果用户没有提供时间戳,那么生产者将会在记录中使用当前的时间作为时间戳。Kafka 最终使用的时间戳取决于 topic 主题配置的时间戳类型。 然后,这条消息被存放在一个记录批次里,这个批次里的所有消息会被发送到相同的主题和分区上。由一个独立的线程负责把它们发到 Kafka Broker 上。

Kafka Broker 在收到消息时会返回一个响应,如果写入成功,会返回一个 RecordMetaData 对象,它包含了主题和分区信息,以及记录在分区里的偏移量,上面两种的时间戳类型也会返回给用户。如果写入失败,会返回一个错误。生产者在收到错误之后会尝试重新发送消息,几次之后如果还是失败的话,就返回错误消息。

Kafka 对于数据的读写是以分区为粒度的,分区可以分布在多个主机(Broker)中,这样每个节点能够实现独立的数据写入和读取,并且能够通过增加新的节点来增加 Kafka 集群的吞吐量,通过分区部署在多个 Broker 来实现负载均衡的效果

分区的原因

(1)方便在集群中扩展,每个 partition 可以通过调整以适应它们的机器,而一个 topic 又可以有多个 partition 组成,因此整个集群就可以适应任意大小的数据了。

(2)可以提高并发,因为可以以 partition 为单位读写了。

分区的原则

我们需要将 producer 发送的数据封装成一个 ProducerRecord 对象。

topic:string 类型,NotNull partition:int 类型,可选 timestamp:long 类型,可选 key:string类型,可选 value:string 类型,可选 headers:array 类型,Nullable (1)指明 partition 的情况下,直接将指明的值作为 partition 值;

(2)没有指明 partition 值但有 key 的情况下,将 key 值的 hash 值与 topic 的 partition 数进行取余得到 partition 值;

(3)既没有 partition 又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin (轮询)算法

3.3.1 数据可靠性保证

为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 中的每个 partition 收到 producer 发送的数据后,都需要向 producer 发送 ack (acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。

3.4 Kafka 消费者

3.4.1概念

Kafka消费者对象订阅主题并接收Kafka的消息,然后验证消息并保存结果。Kafka消费者是消费者组的一部分。一个消费者组里的消费者订阅的是同一个主题,每个消费者接收主题一部分分区的消息。消费者组的设计是对消费者进行的一个横向伸缩,用于解决消费者消费数据的速度跟不上生产者生产数据的速度的问题,通过增加消费者,让它们分担负载,分别处理部分分区的消息。

3.4.2 消费方式

1.消费位移确认 Kafka消费者消费位移确认有自动提交与手动提交两种策略。在创建KafkaConsumer对象时,通过参数enable.auto.commit设定,true表示自动提交(默认)。自动提交策略由消费者协调器(ConsumerCoordinator)每隔${auto.commit.interval.ms}毫秒执行一次偏移量的提交。手动提交需要由客户端自己控制偏移量的提交。 (1)自动提交。在创建一个消费者时,默认是自动提交偏移量,当然我们也可以显示设置为自动。例如,我们创建一个消费者,该消费者自动提交偏移量

(2)手动提交。在有些场景我们可能对消费偏移量有更精确的管理,以保证消息不被重复消费以及消息不被丢失。假设我们对拉取到的消息需要进行写入数据库处理,或者用于其他网络访问请求等等复杂的业务处理,在这种场景下,所有的业务处理完成后才认为消息被成功消费,这种场景下,我们必须手动控制偏移量的提交。

2 以时间戳查询消息

Kafka 在0.10.1.1 版本增加了时间戳索引文件,因此我们除了直接根据偏移量索引文件查询消息之外,还可以根据时间戳来访问消息。consumer-API 提供了一个offsetsForTimes(Map<TopicPartition, Long> timestampsToSearch)方法,该方法入参为一个Map 对象,Key 为待查询的分区,Value 为待查询的时间戳,该方法会返回时间戳大于等于待查询时间的第一条消息对应的偏移量和时间戳。需要注意的是,若待查询的分区不存在,则该方法会被一直阻塞。

3 消费速度控制

提供 pause(Collection partitions)和resume(Collection partitions)方法,分别用来暂停某些分区在拉取操作时返回数据给客户端和恢复某些分区向客户端返回数据操作。通过这两个方法可以对消费速度加以控制,结合业务使用。

3.5 Kafka 高效读取数据

1.kafka本身是分布式集群,同时采用分区技术,并发度高。 2.顺序写磁盘,kafka的producer生产数据,要写入到log文件中,写的过程是一直追加到文件末端,为顺序写。官网有数据表明,同样的磁盘,顺序写能到600M/s,而随机写只有100k/s。 3.零复制技术

零拷贝是文件只需要经过Page Cache就可以直接发送出去了,这样就极大的增加了发送数据的效率。

应用Page Cache,kafka将数据直接持久化到Page Cache中,其实就是内存中,这样有几个优点:1,I/O Scheduler 可以将多个小块的写组装成大块的写操作,降低了I/O次数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值