[医学影像知识] 医学体数据.mha文件,如何存取元信息?

本文由Markdown语法编辑器编辑完成.

在这里插入图片描述

1. 背景:

在上一篇文章中,已经介绍了.mha格式的体数据文件,在医学影像软件中的应用,即,它可以将一个序列内所有的dicom内的PixelData, 都集成到一个文件中.
这对于后续的读取是一个很大的帮助.因为计算机在读取一个整块的.mha大文件(几百MB)的速度,要远远高于读取很多很多小(一张512*512的CT dicom图像是500KB左右)的文件.

但是,.mha文件由于主要保存的像素信息,因此它包含的其他信息很少,比如DICOM文件中,一般会包含几百个不同的tag, 记录了这张dicom的各种参数,比如患者信息,检查描述,检查号,拍摄日期和时间,扫描协议,拍摄方位等等.

这些信息,对于后处理有很大的帮助.

因此,如果我们可以直接从.mha文件中来读取出这些tag信息,那么就极大地简化了一些处理逻辑.于是,我们这篇文章,主要就是要解决,如何与.mha文件进行交互,存储和读取其他tag信息.

2. 方法介绍:

2.1 .mha元信息

在之前的博文中,已经写过如果利用simpleITK, 来生成一个包含一个序列内全部像素信息的.mha文件。这里不再赘述。
假设我们已经有一个之前生成好的.mha文件。那么我们首先读取这个.mha文件,看看它除了体数据,还有哪些信息。

以下是一段, 基于SimpleITK读取一个已经存在.mha的文件,并且读取它已知的元信息的代码.

import SimpleITK as sitk
image = sitk.ReadImage("test.mha")
image.GetMetaDataKeys()

它的输出结果为:

('ITK_InputFilterName', 'ITK_original_direction', 'ITK_original_spacing')

然后读取这几个Key值时,输出的结果却是UNKNOWN_PRINT_CHARACTERISTICS.

image.GetMetaData("ITK_original_direction")

'[UNKNOWN_PRINT_CHARACTERISTICS]\n'

从这里可以看出,虽然.mha文件,虽然有默认的几个元信息的key. 但如果不提前赋值的话,也是读取不到结果的。

2.2 为.mha提前写入元信息

既然可以从.mha中,读出默认的一些key. 那么我们也可以在生成.mha之后,将一些未来需要使用的key值,提前写入到.mha文件中,比如PatientID, AccessionNumer等。

以下是一个测试代码:

import SimpleITK as sitk
image = sitk.ReadImage("test.mha")
image.SetMetaData("PatientID", "123456")

modify_mha_file = "modify.mha"
sitk.WriteImage(image, modify_mha_file)

image2 = sitk.ReadImage(modify_mha_file)
image2.GetMetaData("PatientID")

在这里插入图片描述

通过以上的测试,可以发现,虽然.mha体数据文件,主要是用来保存dicom文件中的像素信息的。
但是如果由于特定的需求,也需要在.mha中,包含一些文本信息。那么,基于SimpleITK的sitk.Image对象提供的SetMetaData(), GetMetaData()接口,通过设置key, value的方式,写入和读出包含在.mha文件中的元信息。

### 如何用 Python 处理 `.mha` 文件 `.mha` 是一种常见的医学影像文件格式,通常用于存储三维医学图像数据。为了在 Python 中读取和处理这种文件格式,可以借助专门的库来完成此任务。 #### 使用 SimpleITK 库读取 `.mha` 文件 SimpleITK 是一个功能强大的开源工具包,支持多种医学影像格式(包括 `.mha` 和 `.nii`)。以下是通过 SimpleITK 读取 `.mha` 文件并显示其基本信息的方法: ```python import SimpleITK as sitk # 读取.mha文件 image = sitk.ReadImage("example.mha") # 获取图像的基本属性 size = image.GetSize() # 图像尺寸 spacing = image.GetSpacing() # 像素间距 origin = image.GetOrigin() # 起始坐标 direction = image.GetDirection() # 方向矩阵 print(f"Size: {size}, Spacing: {spacing}, Origin: {origin}, Direction: {direction}") # 将图像转换为 NumPy 数组以便进一步处理 import numpy as np array_view = sitk.GetArrayViewFromImage(image) # 打印数组形状 print(f"NumPy Array Shape: {array_view.shape}") ``` 上述代码展示了如何利用 `sitk.ReadImage()` 函数加载 `.mha` 文件,并提取其元数据信息[^2]。 #### 使用 NiBabel 库读取 `.mha` 文件 NiBabel 是另一个广泛使用的医学影像处理库,尽管它主要针对 NIfTI 格式,但也能够兼容部分其他医学影像格式。如果需要尝试使用 NiBabel 来读取 `.mha` 文件,则需安装额外的支持插件或依赖项。 ```python import nibabel as nib # 加载.mha文件 image = nib.load("example.mha") # 提取数据作为NumPy数组 data = image.get_fdata() # 输出数据维度 print(f"Data shape: {data.shape}") ``` 需要注意的是,某些情况下可能需要手动配置环境变量或者下载特定驱动程序才能使 NiBabel 正确解析 `.mha` 文件。 #### 数据可视化 无论是采用哪种方式获取到的数据都可以通过 Matplotlib 进行简单的二维切片展示: ```python import matplotlib.pyplot as plt # 取中间层进行显示 (假设是一个3D积) middle_slice = array_view[array_view.shape[0]//2] plt.figure(figsize=(8,6)) plt.title('Middle Slice of MHA Image') plt.imshow(middle_slice, cmap='gray') plt.axis('off') plt.show() ``` 以上即为基于 Python 对于 `.mha` 类型医学影像基本操作流程介绍[^1][^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

inter_peng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值