Spring Boot集成Spring AI与Milvus实现智能问答系统

在Spring Boot中集成Spring AI与Milvus实现智能问答系统

引言

随着人工智能技术的快速发展,越来越多的开发者希望将AI能力集成到自己的应用中。本文将介绍如何在Spring Boot项目中集成Spring AI和向量数据库Milvus,构建一个高效的智能问答系统。

技术栈

  • 核心框架: Spring Boot 3.x
  • AI框架: Spring AI
  • 向量数据库: Milvus
  • 其他工具: Lombok, MapStruct

实现步骤

1. 环境准备

首先,确保你的开发环境中已安装以下工具:

  • JDK 17+
  • Maven 3.8+
  • Docker(用于运行Milvus)

2. 创建Spring Boot项目

使用Spring Initializr创建一个新的Spring Boot项目,添加以下依赖:

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-milvus</artifactId>
        <version>1.0.0</version>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <optional>true</optional>
    </dependency>
</dependencies>

3. 配置Milvus

启动Milvus服务:

docker run -d --name milvus -p 19530:19530 milvusdb/milvus:latest

application.properties中配置Milvus连接信息:

spring.ai.milvus.host=localhost
spring.ai.milvus.port=19530

4. 实现智能问答功能

创建一个服务类,用于处理用户问题并返回答案:

@Service
@RequiredArgsConstructor
public class QAService {
    private final MilvusTemplate milvusTemplate;

    public String answerQuestion(String question) {
        // 将问题转换为向量
        float[] vector = convertToVector(question);
        // 在Milvus中搜索相似答案
        List<String> results = milvusTemplate.search(vector);
        return results.isEmpty() ? "未找到答案" : results.get(0);
    }

    private float[] convertToVector(String text) {
        // 使用Spring AI的Embedding模型将文本转换为向量
        // 示例代码省略
        return new float[0];
    }
}

5. 测试与优化

编写单元测试验证功能,并根据性能需求优化向量搜索的效率。

总结

通过本文的介绍,我们成功在Spring Boot项目中集成了Spring AI和Milvus,实现了一个简单的智能问答系统。开发者可以根据实际需求扩展功能,例如支持多轮对话或集成其他AI模型。

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值