28、图注意力网络(GAT)介绍

图注意力网络(GAT)介绍

1 图注意力网络概述

图注意力网络(Graph Attention Networks, GAT)是一种用于处理图结构数据的强大工具,它通过引入注意力机制来增强图神经网络(Graph Neural Networks, GNN)的能力。传统的图神经网络,如图卷积网络(Graph Convolutional Networks, GCN),在聚合邻居节点的信息时采用的是固定权重的方式,这使得它们难以捕捉节点之间复杂的关系。而GAT通过为每个节点赋予不同的注意力权重,能够更加灵活地处理节点间的关联。

1.1 注意力机制的重要性

注意力机制的核心思想是允许模型在处理信息时聚焦于最重要的部分。在图结构数据中,节点之间的连接并非均匀重要,某些邻居节点可能对当前节点的影响更大。通过引入注意力机制,GAT能够在每次更新节点表示时动态调整邻居节点的重要性,从而提高模型的表达能力和泛化性能。

1.2 GAT与其他图神经网络的比较

特征 图卷积网络(GCN) 图注意力网络(GAT)
聚合方式 固定权重 动态权重
关注重点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值