图注意力网络(GAT)介绍
1 图注意力网络概述
图注意力网络(Graph Attention Networks, GAT)是一种用于处理图结构数据的强大工具,它通过引入注意力机制来增强图神经网络(Graph Neural Networks, GNN)的能力。传统的图神经网络,如图卷积网络(Graph Convolutional Networks, GCN),在聚合邻居节点的信息时采用的是固定权重的方式,这使得它们难以捕捉节点之间复杂的关系。而GAT通过为每个节点赋予不同的注意力权重,能够更加灵活地处理节点间的关联。
1.1 注意力机制的重要性
注意力机制的核心思想是允许模型在处理信息时聚焦于最重要的部分。在图结构数据中,节点之间的连接并非均匀重要,某些邻居节点可能对当前节点的影响更大。通过引入注意力机制,GAT能够在每次更新节点表示时动态调整邻居节点的重要性,从而提高模型的表达能力和泛化性能。
1.2 GAT与其他图神经网络的比较
特征 | 图卷积网络(GCN) | 图注意力网络(GAT) |
---|---|---|
聚合方式 | 固定权重 | 动态权重 |
关注重点 |