「深度学习一遍过」必修16:Tensorboard与Transforms

此篇博客详细介绍了如何使用Tensorboard进行可视化,包括直线绘制、图片展示及多图片滑动查看。此外,还涵盖了PyTorch中常用的Transforms及其应用,如图片转Tensor和归一化操作。适合深度学习初学者和进阶者查阅。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本专栏用于记录关于深度学习的笔记,不光方便自己复习与查阅,同时也希望能给您解决一些关于深度学习的相关问题,并提供一些微不足道的人工神经网络模型设计思路。
专栏地址:「深度学习一遍过」必修篇    

目录

1 Tensorboard

1.1 初始化 

1.2 使用实例

1.2.1 画一条直线

1.2.2 查看一张图片

1.2.3 滑动查看多张图片

2 Transforms

2.1 常见的Transforms

2.2 Transforms该如何使用


1 Tensorboard

1.1 初始化 

终端键入

tensorboard --logdir=*** --port=****
  • --logdir= 事件文件所在文件夹名 
  • --port= 路径后缀数字名(可自定义)

1.2 使用实例

1.2.1 画一条直线

from tensorboardX import SummaryWriter

writer = SummaryWriter('logs')

for i in range(100):
    writer.add_scalar('y=x', i, i)

writer.close()
tensorboard --logdir=logs --port=6007

1.2.2 查看一张图片

import numpy as np
from PIL import Image
from tensorboardX import SummaryWriter

writer = SummaryWriter('logs')

img_path = r'H:\girl.jpeg'
img_PIL = Image.open(img_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

writer.add_image('test', img_array, 1, dataformats='HWC')

writer.close()

1.2.3 滑动查看多张图片

1.2.2 基础上再在 IDE 上运行下列代码:

import numpy as np
from PIL import Image
from tensorboardX import SummaryWriter

writer = SummaryWriter('logs')

img_path = r'H:girlfriend.jpg'
img_PIL = Image.open(img_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

writer.add_image('test', img_array, 1, dataformats='HWC')

writer.close()

2 Transforms

2.1 常见的Transforms

  • 输入 --> PIL --> Image.open()
  • 输出 --> tensor --> ToTensor()
  • 作用 --> narrays --> cv.imread()

2.2 Transforms该如何使用

from PIL import Image
from torchvision import transforms

img_path = 'E:/img.PNG'
img = Image.open(img_path)

tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)

print(tensor_img)

from PIL import Image
from tensorboardX import SummaryWriter
from torchvision import transforms

writer = SummaryWriter('logs')
img_path = r'female.jpg'
img = Image.open(img_path)
print(img)

# ToTensor
trans_tensors = transforms.ToTensor()
img_tensor = trans_tensors(img)
writer.add_image('ToTensor', img_tensor)

# Normalize
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image('Normalize', img_norm)

writer.close()

欢迎大家交流评论,一起学习

希望本文能帮助您解决您在这方面遇到的问题

感谢阅读
END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荣仔!最靓的仔!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值