OpenCV光流Optical Flow

本文介绍了光流的基本概念,光流方程式,以及Lucas-Kanade方法。通过OpenCV的cv.calcOpticalFlowPyrLK()函数,演示了如何在视频中跟踪特征点,并使用cv.calcOpticalFlowFarneback()计算密集光流场。光流在运动分析、视频压缩等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

光流Optical Flow

目标

在这一章当中,
我们将了解光流的概念及其使用Lucas-Kanade方法的估算。
我们将使用cv.calcOpticalFlowPyrLK()之类的函数来跟踪视频中的特征点。
我们将使用cv.calcOpticalFlowFarneback()方法创建一个密集的光流场。

光流

光流是由物体或照相机的运动引起的两个连续帧之间图像物体视在运动的模式。它是2D向量场,其中每个向量都是位移向量,表示点从第一帧到第二帧的运动。请看下面的图片
在这里插入图片描述
它显示了一个球在5个连续帧中移动。箭头显示其位移向量。光流在以下领域有许多应用:

运动的结构
视频压缩
视频稳定…
光流的工作基于以下几个假设:

物体的像素强度在连续的帧之间不改变。
相邻像素具有相似的运动。
考虑第一帧中的像素I(x,y,t)(在此处添加新尺寸,检查时间。之前我们只处理图像,因此不需要时间)。 它在dt时间后拍摄的下一帧中按距离(dx,dy)移动。 因此,由于这些像素相同且强度不变,因此可以说,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值