DomainModel——域模型接受参数

本文介绍了一个基于Struts2框架实现的简单用户添加功能示例。通过定义User类来存储用户信息,并创建UserAction类处理用户提交的数据。配置文件中定义了处理流程和页面跳转。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package com.zchen.struts2.user.model;
public class User {
	private String name;
	private int age;
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public int getAge() {
		return age;
	}
	public void setAge(int age) {
		this.age = age;
	}
}

 

package com.zchen.struts2.user.action;

import com.zchen.struts2.user.model.User;
import com.opensymphony.xwork2.ActionSupport;

public class UserAction extends ActionSupport {
	private User user;
	public String add() {
		System.out.println("name=" + user.getName());
		System.out.println("age=" + user.getAge());
		return SUCCESS;
	}
	public User getUser() {
		return user;
	}
	public void setUser(User user) {
		this.user = user;
	}
	
}
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
    "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
    "http://struts.apache.org/dtds/struts-2.0.dtd">
<struts>
    <constant name="struts.devMode" value="true" />
    <package name="user" extends="struts-default" namespace="/user">        
        <action name="user" class="com.zchen.struts2.user.action.UserAction">
            <result>/user_add_success.jsp</result>
        </action>
    </package>
</struts>
 

 

<body> 
使用Domain Model接收参数<a href="user/user!add?user.name=a&user.age=8">添加用户</a>
</body>

 

### 知识库中的文本理解模型类型 知识库中使用的文本理解模型通常涉及多种类型的深度学习架构和技术,这些技术旨在提升对复杂语义的理解能力以及提高检索精度。以下是几种常见的文本理解模型及其特点: #### 1. Transformer-Based 模型 Transformer 架构因其强大的上下文理解和并行计算能力,在文本理解领域占据主导地位。具体实现包括 BERT、RoBERTa 和 ELECTRA 等预训练语言模型。这类模型通过多头注意力机制捕捉输入序列中的全局依赖关系,从而更好地表示文本的深层含义[^1]。 ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') text = "This is an example sentence." tokens = tokenizer(text, return_tensors="pt") outputs = model(**tokens) print(outputs.last_hidden_state.shape) ``` #### 2. Siamese Network (孪生网络) Siamese Networks 被广泛应用于相似度比较任务中,比如查询与文档之间的匹配程度评估。它由两个共享权重的子网络组成,分别接收不同的输入向量,并最终通过距离函数衡量两者的接近程度[^2]。 #### 3. Fine-Tuned Domain-Specific Models 针对特定行业或主题定制化微调后的专用版本也是常见做法之一。例如医疗健康类别的知识管理系统可能会采用 BioBERT 或 ClinicalBERT 这样的变体来增强专业知识点识别效果[^3]。 #### 数据质量的重要性 无论选用何种高级算法框架,“垃圾进垃圾出”的原则始终适用——即如果原始素材存在大量噪声或者错误标注,则即使再优秀的解决方案也无法产出理想成果因此前期的数据清理工作至关重要不可忽视。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值